Suppr超能文献

将等离子体特征与机器学习相结合,实现对纳米颗粒尺寸和尺寸分布的准确和双向预测。

Incorporating plasmonic featurization with machine learning to achieve accurate and bidirectional prediction of nanoparticle size and size distribution.

机构信息

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

出版信息

Nanoscale Horiz. 2022 May 31;7(6):626-633. doi: 10.1039/d2nh00146b.

Abstract

Determination of nanoparticle size and size distribution is important because these key parameters dictate nanomaterials' properties and applications. Yet, it is only accomplishable using low-throughput electron microscopy. Herein, we incorporate plasmonic-domain-driven feature engineering with machine learning (ML) for accurate and bidirectional prediction of both parameters for complete characterization of nanoparticle ensembles. Using gold nanospheres as our model system, our ML approach achieves the lowest prediction errors of 2.3% and ±1.0 nm for ensemble size and size distribution respectively, which is 3-6 times lower than previously reported ML or Mie approaches. Knowledge elicitation from the plasmonic domain and concomitant translation into featurization allow us to mitigate noise and boost data interpretability. This enables us to overcome challenges arising from size anisotropy and small sample size limitations to achieve highly generalizable ML models. We further showcase inverse prediction capabilities, using size and size distribution as inputs to generate spectra with LSPRs that closely match experimental data. This work illustrates a ML-empowered total nanocharacterization strategy that is rapid (<30 s), versatile, and applicable over a wide size range of 200 nm.

摘要

确定纳米颗粒的大小和分布非常重要,因为这些关键参数决定了纳米材料的性质和应用。然而,这只能通过低通量的电子显微镜来实现。在此,我们将基于等离子体的特征工程与机器学习 (ML) 相结合,实现了对这两个参数的准确和双向预测,从而对纳米颗粒进行了全面的特性描述。我们使用金纳米球作为模型系统,通过 ML 方法对纳米颗粒的尺寸和尺寸分布进行预测,其预测误差分别低至 2.3%和±1.0nm,比之前报道的 ML 或 Mie 方法低 3-6 倍。从等离子体域中获取知识并转化为特征化,使我们能够减轻噪声并提高数据的可解释性。这使我们能够克服尺寸各向异性和小样本量限制带来的挑战,实现高度可推广的 ML 模型。我们进一步展示了反预测能力,使用尺寸和尺寸分布作为输入,生成的具有 LSPR 的光谱与实验数据非常吻合。这项工作说明了一种基于 ML 的纳米全特性分析策略,该策略快速(<30 秒)、多功能且适用于 200nm 宽的尺寸范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验