Suppr超能文献

基于机器学习技术的 COP9 推特点的烟草控制主题预测。

Topic prediction for tobacco control based on COP9 tweets using machine learning techniques.

机构信息

Tobacco Control Research Group, Department for Health, University of Bath, Bath, United Kingdom.

出版信息

PLoS One. 2024 Feb 15;19(2):e0298298. doi: 10.1371/journal.pone.0298298. eCollection 2024.

Abstract

The prediction of tweets associated with specific topics offers the potential to automatically focus on and understand online discussions surrounding these issues. This paper introduces a comprehensive approach that centers on the topic of "harm reduction" within the broader context of tobacco control. The study leveraged tweets from the period surrounding the ninth Conference of the Parties to review the Framework Convention on Tobacco Control (COP9) as a case study to pilot this approach. By using Latent Dirichlet Allocation (LDA)-based topic modeling, the study successfully categorized tweets related to harm reduction. Subsequently, various machine learning techniques were employed to predict these topics, achieving a prediction accuracy of 91.87% using the Random Forest algorithm. Additionally, the study explored correlations between retweets and sentiment scores. It also conducted a toxicity analysis to understand the extent to which online conversations lacked neutrality. Understanding the topics, sentiment, and toxicity of Twitter data is crucial for identifying public opinion and its formation. By specifically focusing on the topic of "harm reduction" in tweets related to COP9, the findings offer valuable insights into online discussions surrounding tobacco control. This understanding can aid policymakers in effectively informing the public and garnering public support, ultimately contributing to the successful implementation of tobacco control policies.

摘要

预测与特定主题相关的推文有潜力自动关注和理解围绕这些问题的在线讨论。本文介绍了一种综合方法,该方法以烟草控制领域更广泛的“减少伤害”主题为中心。该研究利用了 COP9 会议期间的推文,将其作为案例研究来试点该方法。通过使用基于潜在狄利克雷分配 (LDA) 的主题建模,该研究成功地对与减少伤害相关的推文进行了分类。随后,使用随机森林算法对这些主题进行了多种机器学习技术的预测,准确率达到 91.87%。此外,该研究还探讨了转发和情感得分之间的相关性。它还进行了毒性分析,以了解在线对话缺乏中立性的程度。理解推特数据的主题、情感和毒性对于识别公众意见及其形成至关重要。通过专门关注与 COP9 相关的推文的“减少伤害”主题,研究结果提供了有关烟草控制相关在线讨论的有价值的见解。这种理解可以帮助政策制定者有效地向公众宣传并获得公众支持,最终有助于成功实施烟草控制政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验