Badavath Purnesh Singh, Raskatla Venugopal, Kumar Vijay
Opt Lett. 2024 Feb 15;49(4):1045-1048. doi: 10.1364/OL.514739.
In this Letter, we introduce a novel, to the best of our knowledge, structured light recognition technique based on the 1D speckle information to reduce the computational cost. Compared to the 2D speckle-based recognition [J. Opt. Soc. Am. A39, 759 (2022)10.1364/JOSAA.446352], the proposed 1D speckle-based method utilizes only a 1D array (1×n pixels) of the structured light speckle pattern image (n × n pixels). This drastically reduces the computational cost, since the required data is reduced by a factor of 1/n. A custom-designed 1D convolutional neural network (1D-CNN) with only 2.4 k learnable parameters is trained and tested on 1D structured light speckle arrays for fast and accurate recognition. A comparative study is carried out between 2D speckle-based and 1D speckle-based array recognition techniques comparing the data size, training time, and accuracy. For a proof-of-concept for the 1D speckle-based structured light recognition, we have established a 3-bit free-space communication channel by employing structured light-shift keying. The trained 1D CNN has successfully decoded the encoded 3-bit gray image with an accuracy of 94%. Additionally, our technique demonstrates robust performance under noise variation showcasing its deployment in practical cost-effective real-world applications.
在本信函中,据我们所知,我们介绍了一种基于一维散斑信息的新型结构化光识别技术,以降低计算成本。与基于二维散斑的识别方法[《美国光学学会志》A39, 759 (2022)10.1364/JOSAA.446352]相比,所提出的基于一维散斑的方法仅利用结构化光散斑图案图像(n×n像素)的一维阵列(1×n像素)。这极大地降低了计算成本,因为所需数据减少了1/n倍。一个仅具有2.4k个可学习参数的定制设计的一维卷积神经网络(1D-CNN)在一维结构化光散斑阵列上进行训练和测试,以实现快速准确的识别。在基于二维散斑和基于一维散斑的阵列识别技术之间进行了一项比较研究,比较了数据大小、训练时间和准确性。为了对基于一维散斑的结构化光识别进行概念验证,我们通过采用结构化光移键控建立了一个3位自由空间通信信道。经过训练的一维卷积神经网络已成功解码编码的3位灰度图像,准确率达到94%。此外,我们的技术在噪声变化下表现出稳健的性能,展示了其在实际经济高效的现实世界应用中的部署潜力。