Suppr超能文献

通过相位编码方向的域变换流形学习加速笛卡尔磁共振成像

Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.

作者信息

Eo Taejoon, Shin Hyungseob, Jun Yohan, Kim Taeseong, Hwang Dosik

机构信息

School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.

School of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.

出版信息

Med Image Anal. 2020 Jul;63:101689. doi: 10.1016/j.media.2020.101689. Epub 2020 Mar 30.

Abstract

This study developed a domain-transform framework comprising domain-transform manifold learning with an initial analytic transform to accelerate Cartesian magnetic resonance imaging (DOTA-MRI). The proposed method directly transforms undersampled Cartesian k-space data into a reconstructed image. In Cartesian undersampling, the k-space is fully or zero sampled in the data-acquisition direction (i.e., the frequency-encoding direction or the x-direction); one-dimensional (1D) inverse Fourier transform (IFT) along the x-direction on the undersampled k-space does not induce any aliasing. To exploit this, the algorithm first applies an analytic x-direction 1D IFT to the undersampled Cartesian k-space input, and subsequently transforms it into a reconstructed image using deep neural networks. The initial analytic transform (i.e., 1D IFT) allows the fully connected layers of the neural network to learn 1D global transform only in the phase-encoding direction (i.e., the y-direction) instead of 2D transform. This drastically reduces the number of parameters to be learned from O(N) to O(N) compared with the existing manifold learning algorithm (i.e., automated transform by manifold approximation) (AUTOMAP). This enables DOTA-MRI to be applied to high-resolution MR datasets, which has previously proved difficult to implement in AUTOMAP because of the enormous memory requirements involved. After the initial analytic transform, the manifold learning phase uses a symmetric network architecture comprising three types of layers: front-end convolutional layers, fully connected layers for the 1D global transform, and back-end convolutional layers. The front-end convolutional layers take 1D IFT of the undersampled k-space (i.e., undersampled data in the intermediate domain or in the ky-x domain) as input and performs data-domain restoration. The following fully connected layers learn the 1D global transform between the ky-x domain and the image domain (i.e., the y-x domain). Finally, the back-end convolutional layers reconstruct the final image by denoising in the image domain. DOTA-MRI exhibited superior performance over nine other existing algorithms, including state-of-the-art deep learning-based algorithms. The generality of the algorithm was demonstrated by experiments conducted under various sampling ratios, datasets, and noise levels.

摘要

本研究开发了一种域变换框架,该框架包括具有初始解析变换的域变换流形学习,以加速笛卡尔磁共振成像(DOTA-MRI)。所提出的方法直接将欠采样的笛卡尔k空间数据变换为重建图像。在笛卡尔欠采样中,k空间在数据采集方向(即频率编码方向或x方向)上进行全采样或零采样;对欠采样k空间沿x方向进行一维(1D)逆傅里叶变换(IFT)不会产生任何混叠。为利用这一点,该算法首先对欠采样的笛卡尔k空间输入应用解析x方向1D IFT,随后使用深度神经网络将其变换为重建图像。初始解析变换(即1D IFT)允许神经网络的全连接层仅在相位编码方向(即y方向)学习1D全局变换,而不是2D变换。与现有的流形学习算法(即通过流形近似进行自动变换)(AUTOMAP)相比,这极大地减少了要学习的参数数量,从O(N)减少到O(N)。这使得DOTA-MRI能够应用于高分辨率MR数据集,而此前由于涉及巨大的内存需求,在AUTOMAP中已证明难以实现。在初始解析变换之后,流形学习阶段使用一种对称网络架构,该架构包括三种类型的层:前端卷积层、用于1D全局变换的全连接层和后端卷积层。前端卷积层将欠采样k空间的1D IFT(即中间域或ky - x域中的欠采样数据)作为输入,并执行数据域恢复。接下来的全连接层学习ky - x域和图像域(即y - x域)之间的1D全局变换。最后,后端卷积层通过在图像域中去噪来重建最终图像。DOTA-MRI表现出优于其他九种现有算法的性能,包括基于深度学习的最先进算法。该算法的通用性通过在各种采样率、数据集和噪声水平下进行的实验得到了证明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验