Seifer Shahar, Houben Lothar, Elbaum Michael
Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel.
Ultramicroscopy. 2024 May;259:113936. doi: 10.1016/j.ultramic.2024.113936. Epub 2024 Feb 8.
We demonstrate the use of a 4-dimensional scanning transmission electron microscope (4D-STEM) to extract atomic cross section information in amorphous materials. We measure the scattering amplitudes of 200 keV electrons in several representative specimens: amorphous carbon, silica, amorphous ice of pure water, and vitrified phosphate buffer solution. Diffraction patterns are recorded by 4D-STEM with or without energy filter at the zero-loss peak. In addition, Electron Energy Loss Spectroscopy (EELS) data are acquired at several thicknesses and energies. Mixed elastic and inelastic contributions for thick samples can be decoupled based on a convolution model. Measured differential cross sections between 1 and 3 mrad are due primarily to plasmon excitations and follow precisely a 1/θ angular distribution. The measured intensities match Inokuti's calculations of total dipole matrix elements for discrete dipole transitions alone, i.e., transitions to bound states of the atom and not to continuum states. We describe the fundamental mechanism of plasmon excitation in insulators as a two-step interaction process with a fast electron. First, a target electron in the specimen is excited, the probability for which follows from the availability of atomic transitions, with a strong dependence on the column of the periodic table. Second, the dielectric response of the material determines the energy loss. The energy of the loss peak depends primarily on the valence electrons. Elastic scattering is dominant at higher angles, and can be fitted conveniently to 1/θ with a linear dependence on atomic number for light atoms. In order to facilitate the interpretation of 4D STEM measurements in terms of material composition, we introduce two key parameters. Zeta is an analytical equivalent of classical STEM Z-contrast, determined by the ratio of elastic to inelastic scattering coefficients, while eta is the elastic coefficient divided by thickness. The two parameters may serve for identification of basic classes of materials in biological and other amorphous organic specimens.
我们展示了使用四维扫描透射电子显微镜(4D-STEM)来提取非晶材料中的原子截面信息。我们测量了200 keV电子在几种代表性样品中的散射振幅:非晶碳、二氧化硅、纯水的非晶冰以及玻璃化磷酸盐缓冲溶液。通过4D-STEM在零损失峰处有或没有能量过滤的情况下记录衍射图案。此外,在几个厚度和能量下采集电子能量损失谱(EELS)数据。基于卷积模型,可以将厚样品的混合弹性和非弹性贡献解耦。在1到3 mrad之间测量的微分截面主要归因于等离子体激元激发,并且精确地遵循1/θ角分布。测量的强度仅与伊诺库蒂对离散偶极跃迁(即跃迁到原子的束缚态而非连续态)的总偶极矩阵元的计算结果相符。我们将绝缘体中等离子体激元激发的基本机制描述为与快速电子的两步相互作用过程。首先,样品中的一个目标电子被激发,其概率取决于原子跃迁的可用性,强烈依赖于元素周期表中的列。其次,材料的介电响应决定了能量损失。损失峰的能量主要取决于价电子。弹性散射在较高角度占主导,对于轻原子,可以方便地将其拟合为与原子序数呈线性相关的1/θ。为了便于根据材料成分解释4D STEM测量结果,我们引入了两个关键参数。ζ是经典STEM Z对比度的分析等效物,由弹性与非弹性散射系数的比值确定,而η是弹性系数除以厚度。这两个参数可用于识别生物和其他非晶有机样品中的基本材料类别。