Beyer Andreas, Krause Florian F, Robert Hoel L, Firoozabadi Saleh, Grieb Tim, Kükelhan Pirmin, Heimes Damien, Schowalter Marco, Müller-Caspary Knut, Rosenauer Andreas, Volz Kerstin
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.
Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee 1, 28359, Bremen, Germany.
Sci Rep. 2020 Oct 21;10(1):17890. doi: 10.1038/s41598-020-74434-w.
Scanning transmission electron microscopy (STEM) allows to gain quantitative information on the atomic-scale structure and composition of materials, satisfying one of todays major needs in the development of novel nanoscale devices. The aim of this study is to quantify the impact of inelastic, i.e. plasmon excitations (PE), on the angular dependence of STEM intensities and answer the question whether these excitations are responsible for a drastic mismatch between experiments and contemporary image simulations observed at scattering angles below [Formula: see text] 40 mrad. For the two materials silicon and platinum, the angular dependencies of elastic and inelastic scattering are investigated. We utilize energy filtering in two complementary microscopes, which are representative for the systems used for quantitative STEM, to form position-averaged diffraction patterns as well as atomically resolved 4D STEM data sets for different energy ranges. The resulting five-dimensional data are used to elucidate the distinct features in real and momentum space for different energy losses. We find different angular distributions for the elastic and inelastic scattering, resulting in an increased low-angle intensity ([Formula: see text] 10-40 mrad). The ratio of inelastic/elastic scattering increases with rising sample thickness, while the general shape of the angular dependency is maintained. Moreover, the ratio increases with the distance to an atomic column in the low-angle regime. Since PE are usually neglected in image simulations, consequently the experimental intensity is underestimated at these angles, which especially affects bright field or low-angle annular dark field imaging. The high-angle regime, however, is unaffected. In addition, we find negligible impact of inelastic scattering on first-moment imaging in momentum-resolved STEM, which is important for STEM techniques to measure internal electric fields in functional nanostructures. To resolve the discrepancies between experiment and simulation, we present an adopted simulation scheme including PE. This study highlights the necessity to take into account PE to achieve quantitative agreement between simulation and experiment. Besides solving the fundamental question of missing physics in established simulations, this finally allows for the quantitative evaluation of low-angle scattering, which contains valuable information about the material investigated.
扫描透射电子显微镜(STEM)能够获取有关材料原子尺度结构和组成的定量信息,满足了当今新型纳米器件开发中的一项主要需求。本研究的目的是量化非弹性(即等离子体激元激发,PE)对STEM强度角依赖性的影响,并回答这些激发是否导致了在散射角低于40毫弧度时实验与当代图像模拟之间的严重不匹配这一问题。对于硅和铂这两种材料,研究了弹性和非弹性散射的角依赖性。我们在两台互补显微镜中利用能量过滤,这两台显微镜代表了用于定量STEM的系统,以形成不同能量范围的位置平均衍射图案以及原子分辨的4D STEM数据集。所得的五维数据用于阐明不同能量损失在实空间和动量空间中的独特特征。我们发现弹性和非弹性散射具有不同的角分布,导致低角度强度增加(10 - 40毫弧度)。非弹性/弹性散射比随样品厚度增加而增大,同时角依赖性的总体形状保持不变。此外,在低角度区域,该比值随与原子列距离的增加而增大。由于在图像模拟中通常忽略PE,因此在这些角度下实验强度被低估,这尤其影响明场或低角度环形暗场成像。然而,高角度区域不受影响。此外,我们发现非弹性散射对动量分辨STEM中的一阶矩成像影响可忽略不计,这对于测量功能纳米结构内部电场的STEM技术很重要。为了解决实验与模拟之间的差异,我们提出了一种包含PE的改进模拟方案。本研究强调了考虑PE以实现模拟与实验定量一致的必要性。除了解决现有模拟中缺失物理的基本问题外,这最终还能对包含所研究材料有价值信息的低角度散射进行定量评估。