Suppr超能文献

基于改进双塔模型的图神经网络推荐算法

Graph neural network recommendation algorithm based on improved dual tower model.

作者信息

He Qiang, Li Xinkai, Cai Biao

机构信息

School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, 610059, China.

School of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, 610059, China.

出版信息

Sci Rep. 2024 Feb 15;14(1):3853. doi: 10.1038/s41598-024-54376-3.

Abstract

In this era of information explosion, recommendation systems play a key role in helping users to uncover content of interest among massive amounts of information. Pursuing a breadth of recall while maintaining accuracy is a core challenge for current recommendation systems. In this paper, we propose a new recommendation algorithm model, the interactive higher-order dual tower (IHDT), which improves current models by adding interactivity and higher-order feature learning between the dual tower neural networks. A heterogeneous graph is constructed containing different types of nodes, such as users, items, and attributes, extracting richer feature representations through meta-paths. To achieve feature interaction, an interactive learning mechanism is introduced to inject relevant features between the user and project towers. Additionally, this method utilizes graph convolutional networks for higher-order feature learning, pooling the node embeddings of the twin towers to obtain enhanced end-user and item representations. IHDT was evaluated on the MovieLens dataset and outperformed multiple baseline methods. Ablation experiments verified the contribution of interactive learning and high-order GCN components.

摘要

在这个信息爆炸的时代,推荐系统在帮助用户从海量信息中发现感兴趣的内容方面发挥着关键作用。在保持准确性的同时追求召回率的广度是当前推荐系统面临的核心挑战。在本文中,我们提出了一种新的推荐算法模型——交互式高阶双塔(IHDT),它通过在双塔神经网络之间增加交互性和高阶特征学习来改进现有模型。构建了一个包含不同类型节点(如用户、物品和属性)的异构图,通过元路径提取更丰富的特征表示。为了实现特征交互,引入了一种交互式学习机制,在用户塔和项目塔之间注入相关特征。此外,该方法利用图卷积网络进行高阶特征学习,对双塔的节点嵌入进行池化,以获得增强的最终用户和物品表示。IHDT在MovieLens数据集上进行了评估,性能优于多种基线方法。消融实验验证了交互式学习和高阶GCN组件的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3127/11315888/3a721904e371/41598_2024_54376_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验