Suppr超能文献

节点2向量:网络的可扩展特征学习

node2vec: Scalable Feature Learning for Networks.

作者信息

Grover Aditya, Leskovec Jure

机构信息

Stanford University.

出版信息

KDD. 2016 Aug;2016:855-864. doi: 10.1145/2939672.2939754.

Abstract

Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose , an algorithmic framework for learning continuous feature representations for nodes in networks. In , we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

摘要

网络中节点和边的预测任务需要在设计学习算法所使用的特征时付出精心的努力。在表示学习这一更广泛领域的最新研究,通过学习特征本身在自动化预测方面取得了显著进展。然而,目前的特征学习方法在表达能力上还不足以捕捉网络中观察到的连接模式的多样性。在此,我们提出了一种用于学习网络中节点的连续特征表示的算法框架。在该框架中,我们学习节点到低维特征空间的映射,以最大化保留节点网络邻域的可能性。我们定义了节点网络邻域的灵活概念,并设计了一种有偏随机游走过程,该过程能有效地探索不同的邻域。我们的算法推广了基于网络邻域严格概念的先前工作,并且我们认为在探索邻域时增加的灵活性是学习更丰富表示的关键。我们在来自不同领域的几个真实世界网络中的多标签分类和链接预测任务上,证明了该算法框架相较于现有最先进技术的有效性。总体而言,我们的工作代表了一种在复杂网络中高效学习最先进的与任务无关表示的新方法。

相似文献

1
node2vec: Scalable Feature Learning for Networks.
KDD. 2016 Aug;2016:855-864. doi: 10.1145/2939672.2939754.
2
Learning Graph Representations Through Learning and Propagating Edge Features.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8429-8440. doi: 10.1109/TNNLS.2022.3228102. Epub 2024 Jun 3.
3
Context Attention Heterogeneous Network Embedding.
Comput Intell Neurosci. 2019 Aug 21;2019:8106073. doi: 10.1155/2019/8106073. eCollection 2019.
4
Analysis of node2vec random walks on networks.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200447. doi: 10.1098/rspa.2020.0447. Epub 2020 Nov 25.
5
Multi-Task Network Representation Learning.
Front Neurosci. 2020 Jan 23;14:1. doi: 10.3389/fnins.2020.00001. eCollection 2020.
6
HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
J Biomed Inform. 2019 Aug;96:103246. doi: 10.1016/j.jbi.2019.103246. Epub 2019 Jun 27.
7
Co-Embedding of Nodes and Edges With Graph Neural Networks.
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7075-7086. doi: 10.1109/TPAMI.2020.3029762. Epub 2023 May 5.
8
Multi-Task Learning Based Network Embedding.
Front Neurosci. 2020 Jan 14;13:1387. doi: 10.3389/fnins.2019.01387. eCollection 2019.
9
Augmented Graph Neural Network with hierarchical global-based residual connections.
Neural Netw. 2022 Jun;150:149-166. doi: 10.1016/j.neunet.2022.03.008. Epub 2022 Mar 10.
10
Persona2vec: a flexible multi-role representations learning framework for graphs.
PeerJ Comput Sci. 2021 Mar 30;7:e439. doi: 10.7717/peerj-cs.439. eCollection 2021.

引用本文的文献

1
Neural interaction explainable AI predicts drug response across cancers.
NAR Cancer. 2025 Sep 3;7(3):zcaf029. doi: 10.1093/narcan/zcaf029. eCollection 2025 Sep.
2
Generative Graph Dictionary Learning.
Proc Mach Learn Res. 2023;1:40749-40769.
4
Integrating ESM‑2 and Graph Neural Networks with AlphaFold‑2 Structures for Enhanced Protein Function Prediction.
ACS Omega. 2025 Aug 16;10(33):38103-38111. doi: 10.1021/acsomega.5c05484. eCollection 2025 Aug 26.
6
Next-generation graph computing with electric current-based and quantum-inspired approaches.
Nat Commun. 2025 Aug 28;16(1):8029. doi: 10.1038/s41467-025-63494-z.
7
Narratives from GPT-derived networks of news and a link to financial markets dislocations.
Int J Data Sci Anal. 2025;20(2):1105-1129. doi: 10.1007/s41060-024-00516-x. Epub 2024 Mar 17.
8
Graph retrieval augmented large language models for facial phenotype associated rare genetic disease.
NPJ Digit Med. 2025 Aug 24;8(1):543. doi: 10.1038/s41746-025-01955-x.

本文引用的文献

1
Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
2
A large-scale evaluation of computational protein function prediction.
Nat Methods. 2013 Mar;10(3):221-7. doi: 10.1038/nmeth.2340. Epub 2013 Jan 27.
3
Molecular signatures database (MSigDB) 3.0.
Bioinformatics. 2011 Jun 15;27(12):1739-40. doi: 10.1093/bioinformatics/btr260. Epub 2011 May 5.
4
The BioGRID Interaction Database: 2008 update.
Nucleic Acids Res. 2008 Jan;36(Database issue):D637-40. doi: 10.1093/nar/gkm1001. Epub 2007 Nov 13.
5
Graph embedding and extensions: a general framework for dimensionality reduction.
IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51. doi: 10.1109/TPAMI.2007.12.
6
Global protein function prediction from protein-protein interaction networks.
Nat Biotechnol. 2003 Jun;21(6):697-700. doi: 10.1038/nbt825. Epub 2003 May 12.
7
Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.
8
A global geometric framework for nonlinear dimensionality reduction.
Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验