AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2024 Feb 15;15(1):1417. doi: 10.1038/s41467-024-45662-9.
Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.
生物技术塑料回收已成为应对污染危机的一种合适选择。使用 LCC 变体可实现聚对苯二甲酸乙二醇酯 (PET) 的生物降解的重大突破,在工业水平下可实现 90%的转化率。尽管取得了这些成就,但由于剩余的 10%不可生物降解的 PET,其应用仍受到阻碍。在此,我们通过采用计算策略来解决当前的挑战,该策略旨在从细菌 HR29 中设计一种水解酶。重新设计的变体 TurboPETase 优于其他知名的 PET 水解酶。在 8 小时内,在 200 g/kg 的固体负荷下几乎可完成完全解聚。动力学和结构分析表明,性能的提高可能归因于更灵活的 PET 结合槽,这有助于针对更具体的攻击位点进行靶向。总的来说,我们的研究结果在理解和工程方面取得了重大进展,适用于工业聚酯水解酶,并为进一步研究其他聚合物类型提供了指导。