Puetz Hendrik, Illig Alexander-Maurice, Vorobii Mariia, Janknecht Christoph, Contreras Francisca, Flemig Fabian, Schwaneberg Ulrich
Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany.
ChemSusChem. 2025 Jul 27;18(15):e202500257. doi: 10.1002/cssc.202500257. Epub 2025 Jun 26.
Management of synthetic polymer waste is one of the most pressing challenges for society today. Enzymatic recycling of polycondensates like polyamides (PA), however, remains limited due to a lack of efficient polyamidases. This study reports the directed evolution of the polyamidase NylC-TS. Key positions involved in enzyme-substrate interactions and PA 6 hydrolysis are identified through random mutagenesis and molecular dynamics (MD) simulations. The final variant, NylC-HP (NylC-TS), exhibits a 6.9-fold increased specific activity (520 ± 1 μmol h mg ) and enhanced thermal stability (T = 90 °C, ΔT = 4.2 °C), making NylC-HP the fastest polyamidase for PA 6 and PA 6,6 hydrolysis. Despite the improved reaction rate, the degree of depolymerization remains below 1%. To understand the molecular basis of achieved improvements and factors limiting the degree of depolymerization, intra- and intermolecular interactions of various enzyme-substrate complexes are analyzed by incremental docking of PA 6 tetramers and MD simulations. After optimizing the activity and stability of NylC-HP, the findings suggest that widening the substrate binding pocket is likely necessary to improve substrate accessibility to target more buried attack sites on the polymer surface and thereby enhance the degree of depolymerization.
合成聚合物废料的管理是当今社会最紧迫的挑战之一。然而,由于缺乏高效的聚酰胺酶,聚酰胺(PA)等缩聚物的酶促回收仍然有限。本研究报告了聚酰胺酶NylC-TS的定向进化。通过随机诱变和分子动力学(MD)模拟确定了参与酶-底物相互作用和PA 6水解的关键位点。最终变体NylC-HP(NylC-TS)的比活性提高了6.9倍(520±1μmol·h·mg),热稳定性增强(T = 90°C,ΔT = 4.2°C),使NylC-HP成为水解PA 6和PA 6,6最快的聚酰胺酶。尽管反应速率有所提高,但解聚程度仍低于1%。为了理解所取得改进的分子基础以及限制解聚程度的因素,通过PA 6四聚体的增量对接和MD模拟分析了各种酶-底物复合物的分子内和分子间相互作用。在优化了NylC-HP的活性和稳定性后,研究结果表明,扩大底物结合口袋可能是提高底物可及性以靶向聚合物表面更多埋藏攻击位点从而提高解聚程度所必需的。