Tarazona Natalia A, Wei Ren, Brott Stefan, Pfaff Lara, Bornscheuer Uwe T, Lendlein Andreas, Machatschek Rainhard
Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany.
Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany.
Chem Catal. 2022 Dec 15;2(12):3573-3589. doi: 10.1016/j.checat.2022.11.004.
Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature () between 40°C and 44°C, which is >20°C lower than the of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.
酶促水解在塑料废物回收和升级回收方面具有巨大潜力。界面催化模式以及不同降解条件下聚合物样品性质的可变性,增加了理解聚合物裂解和设计更好的生物催化剂的复杂性和难度。我们提出了一种系统方法来研究聚对苯二甲酸乙二酯(PET)的酶催化表面侵蚀,同时实时监测/控制操作条件,同时检测质量损失和粘弹性行为的变化。置于水上的PET纳米薄膜呈现出多孔形态,玻璃化转变温度()在40°C至44°C之间且与厚度有关,这比本体无定形PET的低20°C以上。由包含热稳定变体的PET酶和MHET酶的双酶系统进行水解,在50°C下1小时内最大解聚率达70%。我们证明,增加可及表面积、非晶化和降低速度可加速PET降解,同时降低降解诱导结晶的阈值。