Zhao Shiwei, Cui Zhenyu, Zhang Gonglei, Gong Yanlong, Su Lingtao
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China.
Front Genet. 2024 Jul 15;15:1440448. doi: 10.3389/fgene.2024.1440448. eCollection 2024.
Protein-Protein Interactions (PPIs) involves in various biological processes, which are of significant importance in cancer diagnosis and drug development. Computational based PPI prediction methods are more preferred due to their low cost and high accuracy. However, existing protein structure based methods are insufficient in the extraction of protein structural information. Furthermore, most methods are less interpretable, which hinder their practical application in the biomedical field. In this paper, we propose MGPPI, which is a Multiscale graph convolutional neural network model for PPI prediction. By incorporating multiscale module into the Graph Neural Network (GNN) and constructing multi convolutional layers, MGPPI can effectively capture both local and global protein structure information. For model interpretability, we introduce a novel visual explanation method named Gradient Weighted interaction Activation Mapping (Grad-WAM), which can highlight key binding residue sites. We evaluate the performance of MGPPI by comparing with state-of-the-arts methods on various datasets. Results shows that MGPPI outperforms other methods significantly and exhibits strong generalization capabilities on the multi-species dataset. As a practical case study, we predicted the binding affinity between the spike (S) protein of SARS-COV-2 and the human ACE2 receptor protein, and successfully identified key binding sites with known binding functions. Key binding sites mutation in PPIs can affect cancer patient survival statues. Therefore, we further verified Grad-WAM highlighted residue sites in separating patients survival groups in several different cancer type datasets. According to our results, some of the highlighted residues can be used as biomarkers in predicting patients survival probability. All these results together demonstrate the high accuracy and practical application value of MGPPI. Our method not only addresses the limitations of existing approaches but also can assists researchers in identifying crucial drug targets and help guide personalized cancer treatment.
蛋白质-蛋白质相互作用(PPIs)参与各种生物过程,这在癌症诊断和药物开发中具有重要意义。基于计算的PPI预测方法因其低成本和高精度而更受青睐。然而,现有的基于蛋白质结构的方法在蛋白质结构信息提取方面存在不足。此外,大多数方法的可解释性较差,这阻碍了它们在生物医学领域的实际应用。在本文中,我们提出了MGPPI,这是一种用于PPI预测的多尺度图卷积神经网络模型。通过将多尺度模块纳入图神经网络(GNN)并构建多个卷积层,MGPPI可以有效地捕获局部和全局蛋白质结构信息。为了提高模型的可解释性,我们引入了一种名为梯度加权相互作用激活映射(Grad-WAM)的新颖可视化解释方法,该方法可以突出关键结合残基位点。我们通过在各种数据集上与现有最先进的方法进行比较来评估MGPPI的性能。结果表明,MGPPI明显优于其他方法,并且在多物种数据集上表现出强大的泛化能力。作为一个实际案例研究,我们预测了SARS-CoV-2的刺突(S)蛋白与人ACE2受体蛋白之间的结合亲和力,并成功识别出具有已知结合功能的关键结合位点。PPIs中的关键结合位点突变会影响癌症患者的生存状态。因此,我们进一步在几个不同癌症类型的数据集中验证了Grad-WAM突出显示的残基位点在区分患者生存组方面的作用。根据我们的结果,一些突出显示的残基可以用作预测患者生存概率的生物标志物。所有这些结果共同证明了MGPPI的高精度和实际应用价值。我们的方法不仅解决了现有方法的局限性,还可以帮助研究人员识别关键的药物靶点,并有助于指导个性化癌症治疗。