Gopalakrishnan Mohan, Etesami Mohamad, Theerthagiri Jayaraman, Choi Myong Yong, Wannapaiboon Suttipong, Nguyen Mai Thanh, Yonezawa Tetsu, Kheawhom Soorathep
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
Nanoscale. 2022 Dec 15;14(48):17908-17920. doi: 10.1039/d2nr04933c.
Due to their affordability and good catalytic activity for oxygen reactions, MOF-derived carbon composites containing metal alloys have piqued interest. However, during synthesis, MOFs have the disadvantage of causing significant carbon evaporation, resulting in a reduction of active sites and durability. This study proposes tailoring the molecular structure of MOFs by optimizing bipyridine and flexible 4-aminodiacetic terephthalic acid ligands, which have numerous coordination modes and framework structures, resulting in fascinating architectures. MOF frameworks having optimized N and O units are coordinated with Co and Ni ions to provide MOF precursors that are annealed at 700 °C in argon. The MOF-derived CoS/Co-N/CoNi/NiS@CNS-4 catalyst exhibits excellent catalytic activity, revealing an ORR half-wave potential of 0.86 V and an overpotential (OER) of 196 mV at 10 mA cm, a potential gap of 0.72 V and a Tafel slope of 79 mV dec. The proposed strategy allows for the rational design of N-coordinated Co and CoNi alloys attached to ultrathin N, S co-doped graphitic carbon sheets to enhance bifunctional activity and sufficient active sites. Consequently, the zinc-air battery using the synthesized catalyst shows a high peak power density of 206.9 mW cm (Pt/C + RuO 116.1 mW cm), a small polarization voltage of 0.96 V after 370 h at 10 mA cm, and an outstanding durability of over 2400 cycles (400 h). The key contributions to the superior performance are the synergetic effects of the CoNi alloys plus the N,S-incorporated carbon skeleton, due to the small charge transfer resistances and enhanced active sites of CoNi, metal-S, and pyridinic N.
由于其价格实惠且对氧反应具有良好的催化活性,含有金属合金的金属有机框架衍生碳复合材料引起了人们的兴趣。然而,在合成过程中,金属有机框架存在导致大量碳蒸发的缺点,从而导致活性位点和耐久性降低。本研究提出通过优化具有多种配位模式和骨架结构的联吡啶和柔性4-氨基二乙酸对苯二甲酸配体来定制金属有机框架的分子结构,从而得到引人入胜的结构。具有优化的N和O单元的金属有机框架与Co和Ni离子配位,以提供在氩气中于700℃退火的金属有机框架前驱体。金属有机框架衍生的CoS/Co-N/CoNi/NiS@CNS-4催化剂表现出优异的催化活性,在10 mA cm时的氧还原反应半波电位为0.86 V,过电位(析氧反应)为196 mV,电位差为0.72 V,塔菲尔斜率为79 mV dec。所提出的策略允许合理设计附着在超薄N、S共掺杂石墨碳片上的N配位Co和CoNi合金,以增强双功能活性和提供足够的活性位点。因此,使用合成催化剂的锌空气电池显示出206.9 mW cm的高峰值功率密度(Pt/C + RuO为116.1 mW cm),在10 mA cm下370 h后极化电压小至0.96 V,并且具有超过2400次循环(400 h)的出色耐久性。对卓越性能的关键贡献在于CoNi合金与N、S掺入的碳骨架的协同效应,这归因于CoNi、金属-S和吡啶型N的小电荷转移电阻和增强的活性位点。