Yang Xinzhe, Ding Haowen, Li Shunning, Zheng Shisheng, Li Jian-Feng, Pan Feng
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China.
College of Energy, Xiamen University, Xiamen 361000, China.
J Am Chem Soc. 2024 Feb 28;146(8):5532-5542. doi: 10.1021/jacs.3c13602. Epub 2024 Feb 16.
The electrochemical carbon dioxide reduction reaction (CORR) toward C products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K vs Li), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CORR.
将二氧化碳电化学还原反应(CORR)转化为含碳产物是清洁能源经济的一种有前景的途径。调节双电层(EDL)的结构,特别是界面水和阳离子类型,是促进碳-碳偶联的一种有效策略,但从原子层面的理解远远落后于实验观察结果。在此,我们使用具有约束分子动力学和慢增长方法的从头算分子动力学(AIMD)模拟,研究了界面水和碱金属阳离子对Cu(100)电极/电解质界面处碳-碳偶联的综合影响。我们观察到以氢键形式表现的水-吸附质稳定化效应与碳-碳偶联自由能相应降低之间存在线性相关性。与较小的阳离子(如Li)相比,较大阳离子(如K)的作用在于其能够通过去溶剂化接近界面并与CO+CO部分配位,部分替代界面水的氢键稳定化作用。尽管这仅导致碳-碳偶联能垒略有降低,但由于其较大的离子半径,它会形成一个氢键稀少的局部疏水环境,阻碍周围界面水的氢接近吸附的CO的氧。这巧妙地规避了CO向碳路径的进一步加氢,这是较大阳离子促进碳-碳偶联的主要因素。这项研究揭示了阳离子-水-吸附质相互作用的全面原子机制,这有助于进一步优化电解质和双电层,以实现CORR中高效的碳-碳偶联。