文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.

作者信息

Li Xueying, Kang Woojong, Fan Xinyi, Tan Xinyi, Masa Justus, Robertson Alex W, Jung Yousung, Han Buxing, Texter John, Cheng Yuanfu, Dai Bin, Sun Zhenyu

机构信息

State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Department of Chemical and Biological Engineering, Institute of Chemical Processes, and Institute of Engineering Research, Seoul National University, 1 Kwanak-ro, Seoul 08826, South Korea.

出版信息

Innovation (Camb). 2025 Jan 17;6(3):100807. doi: 10.1016/j.xinn.2025.100807. eCollection 2025 Mar 3.


DOI:10.1016/j.xinn.2025.100807
PMID:40098663
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11910886/
Abstract

The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications. Electroreduction of carbon dioxide (CO) directly into such high value-added chemicals can help us achieve a renewable C cycle. Such electrochemical reduction typically suffers from low faradaic efficiencies (FEs) and generates a mixture of products due to the complexity of controlling the reaction selectivity. This perspective summarizes recent advances in the mechanistic understanding of CO reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO to liquid C (e.g., formic acid, methanol) and C products (e.g., acetic acid, ethanol, -propanol). Many liquid fuels are being produced with FEs between 80% and 100%. We discuss the use of structure-binding energy relationships, computational screening, and machine learning to identify promising candidates for experimental validation. Finally, we classify strategies for controlling catalyst selectivity and summarize breakthroughs, prospects, and challenges in electrocatalytic CO reduction to guide future developments.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/d22862c3ffd1/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/98867eb90a82/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/7bd4da0d74e9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/857d80a0de40/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/970602d93609/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/cab6528926cd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/3141b39a359d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/fe237d9aa430/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/135dfbc72d1e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/797cf4d20c00/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/e5e8ed447c82/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/d22862c3ffd1/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/98867eb90a82/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/7bd4da0d74e9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/857d80a0de40/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/970602d93609/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/cab6528926cd/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/3141b39a359d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/fe237d9aa430/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/135dfbc72d1e/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/797cf4d20c00/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/e5e8ed447c82/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/11910886/d22862c3ffd1/gr10.jpg

相似文献

[1]
Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.

Innovation (Camb). 2025-1-17

[2]
Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO Reduction to Liquid Fuels with High Faradaic Efficiencies.

Adv Mater. 2018-2-23

[3]
Recent advances and developments in solar-driven photothermal catalytic CO reduction into multicarbon (C) products.

Chem Sci. 2025-2-15

[4]
Ionic liquid-based electrolytes for CO electroreduction and CO electroorganic transformation.

Natl Sci Rev. 2021-2-6

[5]
Copper-Based Catalysts for Electrochemical Reduction of Carbon Dioxide to Ethylene.

Chempluschem. 2023-1

[6]
Catalyst Design for Electrochemical Reduction of CO to Multicarbon Products.

Small Methods. 2021-10

[7]
CO Reduction: From Homogeneous to Heterogeneous Electrocatalysis.

Acc Chem Res. 2020-1-21

[8]
Structure- and Electrolyte-Sensitivity in CO Electroreduction.

Acc Chem Res. 2018-11-20

[9]
Progress and Perspective of Electrocatalytic CO Reduction for Renewable Carbonaceous Fuels and Chemicals.

Adv Sci (Weinh). 2017-9-29

[10]
Theoretical insights into selective electrochemical conversion of carbon dioxide.

Nano Converg. 2019-3-12

本文引用的文献

[1]
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode.

J Phys Chem B. 2004-11-18

[2]
Roles of copper(I) in water-promoted CO electrolysis to multi-carbon compounds.

Nat Commun. 2024-11-15

[3]
The Effect of the Tetraalkylammonium Cation in the Electrochemical CO Reduction Reaction on Copper Electrode.

ACS Catal. 2024-8-14

[4]
Mesostructure-Specific Configuration of *CO Adsorption for Selective CO Electroreduction to C Products.

Angew Chem Int Ed Engl. 2025-1-2

[5]
Breaking the scaling relations of effective CO electrochemical reduction in diatomic catalysts by adjusting the flow direction of intermediate structures.

Chem Sci. 2024-8-8

[6]
Dynamic Cation Enrichment during Pulsed CO Electrolysis and the Cation-Promoted Multicarbon Formation.

J Am Chem Soc. 2024-8-28

[7]
Asymmetric Cu-NO Sites Coupling Atop-type and Bridge-type Adsorbed *C for Electrocatalytic CO-to-C Conversion.

Angew Chem Int Ed Engl. 2024-10-24

[8]
Interrogation of Oxidative Pulsed Methods for the Stabilization of Copper Electrodes for CO Electrolysis.

J Am Chem Soc. 2024-7-17

[9]
Cobalt-Doped Bismuth Nanosheet Catalyst for Enhanced Electrochemical CO Reduction to Electrolyte-Free Formic Acid.

Angew Chem Int Ed Engl. 2024-9-2

[10]
Alkali cation-induced cathodic corrosion in Cu electrocatalysts.

Nat Commun. 2024-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索