National Heart and Lung Institute (NHLI), Imperial College, London, UK.
Clinical Science and Services, Royal Veterinary College, London, UK.
J Vet Intern Med. 2024 Mar-Apr;38(2):922-930. doi: 10.1111/jvim.17012. Epub 2024 Feb 16.
Artificial intelligence (AI) could improve accuracy and reproducibility of echocardiographic measurements in dogs.
A neural network can be trained to measure echocardiographic left ventricular (LV) linear dimensions in dogs.
Training dataset: 1398 frames from 461 canine echocardiograms from a single specialist center.
50 additional echocardiograms from the same center.
Training dataset: a right parasternal 4-chamber long axis frame from each study, labeled by 1 of 18 echocardiographers, marking anterior and posterior points of the septum and free wall.
End-diastolic and end-systolic frames from 50 studies, annotated twice (blindly) by 13 experts, producing 26 measurements of each site from each frame. The neural network also made these measurements. We quantified its accuracy as the deviation from the expert consensus, using the individual-expert deviation from consensus as context for acceptable variation. The deviation of the AI measurement away from the expert consensus was assessed on each individual frame and compared with the root-mean-square-variation of the individual expert opinions away from that consensus.
For the septum in end-diastole, individual expert opinions deviated by 0.12 cm from the consensus, while the AI deviated by 0.11 cm (P = .61). For LVD, the corresponding values were 0.20 cm for experts and 0.13 cm for AI (P = .65); for the free wall, experts 0.20 cm, AI 0.13 cm (P < .01). In end-systole, there were no differences between individual expert and AI performances.
An artificial intelligence network can be trained to adequately measure linear LV dimensions, with performance indistinguishable from that of experts.
人工智能(AI)可以提高犬超声心动图测量的准确性和重现性。
可以训练神经网络来测量犬超声心动图左心室(LV)的线性尺寸。
训练数据集:来自单个专家中心的 461 份犬超声心动图的 1398 个帧。
来自同一中心的 50 个额外超声心动图。
训练数据集:来自每个研究的右胸骨旁 4 腔长轴帧,由 18 名超声心动图专家中的 1 名标记,标记室间隔和游离壁的前点和后点。
50 项研究的舒张末期和收缩末期帧,由 13 名专家进行两次(盲目)注释,从每个帧的每个部位产生 26 个测量值。神经网络也进行了这些测量。我们将其准确性量化为与专家共识的偏差,使用专家共识的个体专家偏差作为可接受变化的背景。在每个单独的帧上评估 AI 测量值与专家共识的偏差,并将其与专家意见偏离共识的均方根变化进行比较。
在舒张末期,个别专家的意见与共识相差 0.12 厘米,而 AI 相差 0.11 厘米(P =.61)。对于 LVD,相应的值分别为专家的 0.20 厘米和 AI 的 0.13 厘米(P =.65);对于游离壁,专家的 0.20 厘米,AI 的 0.13 厘米(P <.01)。在收缩末期,个别专家和 AI 的表现没有差异。
可以训练人工智能网络来充分测量线性 LV 尺寸,其性能与专家的性能无法区分。