Suppr超能文献

使用机器学习算法模拟人类专家,实现无需容积测量的左心室射血分数自动化超声心动图定量分析。

Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert.

机构信息

MedStar Health Research Institute, Washington DC (F.M.A.).

Bay Labs Inc, San Francisco, CA (N.P., M.A., N.R., H.H., R.P.M.).

出版信息

Circ Cardiovasc Imaging. 2019 Sep;12(9):e009303. doi: 10.1161/CIRCIMAGING.119.009303. Epub 2019 Sep 16.

Abstract

BACKGROUND

Echocardiographic quantification of left ventricular (LV) ejection fraction (EF) relies on either manual or automated identification of endocardial boundaries followed by model-based calculation of end-systolic and end-diastolic LV volumes. Recent developments in artificial intelligence resulted in computer algorithms that allow near automated detection of endocardial boundaries and measurement of LV volumes and function. However, boundary identification is still prone to errors limiting accuracy in certain patients. We hypothesized that a fully automated machine learning algorithm could circumvent border detection and instead would estimate the degree of ventricular contraction, similar to a human expert trained on tens of thousands of images.

METHODS

Machine learning algorithm was developed and trained to automatically estimate LVEF on a database of >50 000 echocardiographic studies, including multiple apical 2- and 4-chamber views (AutoEF, BayLabs). Testing was performed on an independent group of 99 patients, whose automated EF values were compared with reference values obtained by averaging measurements by 3 experts using conventional volume-based technique. Inter-technique agreement was assessed using linear regression and Bland-Altman analysis. Consistency was assessed by mean absolute deviation among automated estimates from different combinations of apical views. Finally, sensitivity and specificity of detecting of EF ≤35% were calculated. These metrics were compared side-by-side against the same reference standard to those obtained from conventional EF measurements by clinical readers.

RESULTS

Automated estimation of LVEF was feasible in all 99 patients. AutoEF values showed high consistency (mean absolute deviation =2.9%) and excellent agreement with the reference values: =0.95, bias=1.0%, limits of agreement =±11.8%, with sensitivity 0.90 and specificity 0.92 for detection of EF ≤35%. This was similar to clinicians' measurements: =0.94, bias=1.4%, limits of agreement =±13.4%, sensitivity 0.93, specificity 0.87.

CONCLUSIONS

Machine learning algorithm for volume-independent LVEF estimation is highly feasible and similar in accuracy to conventional volume-based measurements, when compared with reference values provided by an expert panel.

摘要

背景

左心室(LV)射血分数(EF)的超声心动图定量依赖于心内膜边界的手动或自动识别,然后基于模型计算收缩末期和舒张末期 LV 容积。人工智能的最新发展导致了计算机算法的出现,这些算法允许近乎自动地检测心内膜边界并测量 LV 容积和功能。然而,边界识别仍然容易出错,从而限制了某些患者的准确性。我们假设,一种完全自动化的机器学习算法可以规避边界检测,而是估计心室收缩的程度,类似于经过数万张图像训练的人类专家。

方法

开发了机器学习算法,以在超过 50,000 项超声心动图研究的数据库上自动估计 LVEF,包括多个心尖 2 腔和 4 腔视图(AutoEF,BayLabs)。在 99 例独立患者组中进行了测试,将其自动 EF 值与通过传统基于容积的技术由 3 位专家平均测量获得的参考值进行比较。使用线性回归和 Bland-Altman 分析评估技术间一致性。通过不同心尖视图组合的自动估计值之间的平均绝对偏差评估一致性。最后,计算 EF≤35%的检测灵敏度和特异性。这些指标与临床读者获得的传统 EF 测量值的参考标准进行了对比。

结果

在所有 99 例患者中,自动估计 LVEF 是可行的。AutoEF 值显示出高度的一致性(平均绝对偏差=2.9%),并且与参考值具有极好的一致性:=0.95,偏差=1.0%,一致性界限=±11.8%,EF≤35%的检测灵敏度为 0.90,特异性为 0.92。这与临床医生的测量值相似:=0.94,偏差=1.4%,一致性界限=±13.4%,敏感性 0.93,特异性 0.87。

结论

与专家小组提供的参考值相比,用于体积独立 LVEF 估计的机器学习算法具有高度的可行性,并且在准确性方面与传统基于体积的测量相似。

相似文献

引用本文的文献

本文引用的文献

1
Fully Automated Echocardiogram Interpretation in Clinical Practice.临床实践中的全自动超声心动图解读。
Circulation. 2018 Oct 16;138(16):1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验