Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois.
Division of Cardiology, Minneapolis Heart Institute, Minneapolis, Minnesota.
JAMA Cardiol. 2021 Jun 1;6(6):624-632. doi: 10.1001/jamacardio.2021.0185.
Artificial intelligence (AI) has been applied to analysis of medical imaging in recent years, but AI to guide the acquisition of ultrasonography images is a novel area of investigation. A novel deep-learning (DL) algorithm, trained on more than 5 million examples of the outcome of ultrasonographic probe movement on image quality, can provide real-time prescriptive guidance for novice operators to obtain limited diagnostic transthoracic echocardiographic images.
To test whether novice users could obtain 10-view transthoracic echocardiographic studies of diagnostic quality using this DL-based software.
DESIGN, SETTING, AND PARTICIPANTS: This prospective, multicenter diagnostic study was conducted in 2 academic hospitals. A cohort of 8 nurses who had not previously conducted echocardiograms was recruited and trained with AI. Each nurse scanned 30 patients aged at least 18 years who were scheduled to undergo a clinically indicated echocardiogram at Northwestern Memorial Hospital or Minneapolis Heart Institute between March and May 2019. These scans were compared with those of sonographers using the same echocardiographic hardware but without AI guidance.
Each patient underwent paired limited echocardiograms: one from a nurse without prior echocardiography experience using the DL algorithm and the other from a sonographer without the DL algorithm. Five level 3-trained echocardiographers independently and blindly evaluated each acquisition.
Four primary end points were sequentially assessed: qualitative judgement about left ventricular size and function, right ventricular size, and the presence of a pericardial effusion. Secondary end points included 6 other clinical parameters and comparison of scans by nurses vs sonographers.
A total of 240 patients (mean [SD] age, 61 [16] years old; 139 men [57.9%]; 79 [32.9%] with body mass indexes >30) completed the study. Eight nurses each scanned 30 patients using the DL algorithm, producing studies judged to be of diagnostic quality for left ventricular size, function, and pericardial effusion in 237 of 240 cases (98.8%) and right ventricular size in 222 of 240 cases (92.5%). For the secondary end points, nurse and sonographer scans were not significantly different for most parameters.
This DL algorithm allows novices without experience in ultrasonography to obtain diagnostic transthoracic echocardiographic studies for evaluation of left ventricular size and function, right ventricular size, and presence of a nontrivial pericardial effusion, expanding the reach of echocardiography to clinical settings in which immediate interrogation of anatomy and cardiac function is needed and settings with limited resources.
近年来,人工智能(AI)已被应用于医学影像学分析,但 AI 引导超声图像采集是一个新的研究领域。一种新的深度学习(DL)算法,经过 500 多万例超声探头移动对图像质量影响的结果训练,可以为新手操作人员提供实时的规范性指导,以获取有限的诊断性经胸超声心动图图像。
测试新手用户是否可以使用这种基于深度学习的软件获得 10 个视图的经胸超声心动图研究诊断质量。
设计、地点和参与者:这是一项前瞻性、多中心的诊断研究,在 2 家学术医院进行。招募了一组 8 名以前没有进行过超声心动图检查的护士,并使用 AI 对其进行培训。每位护士扫描了 30 名至少 18 岁的患者,这些患者计划在 2019 年 3 月至 5 月期间在西北纪念医院或明尼苏达心脏研究所进行临床指示的超声心动图检查。这些扫描与使用相同超声心动图硬件但没有 AI 指导的超声科医生的扫描进行了比较。
每位患者都接受了配对的有限超声心动图检查:一名没有超声心动图经验的护士使用深度学习算法进行检查,另一名没有使用深度学习算法的超声科医生进行检查。5 名 3 级培训的超声心动图医生独立且盲法评估了每次采集。
连续评估了 4 个主要终点:左心室大小和功能、右心室大小以及心包积液的定性判断。次要终点包括其他 6 个临床参数和护士与超声科医生的扫描比较。
共有 240 名患者(平均[SD]年龄 61[16]岁;139 名男性[57.9%];79 名[32.9%]体重指数>30)完成了研究。8 名护士每人使用深度学习算法对 30 名患者进行了扫描,在 240 例患者中的 237 例(98.8%)和 240 例患者中的 222 例(92.5%)中,研究结果被判断为左心室大小、功能和心包积液的诊断质量。对于次要终点,护士和超声科医生的扫描在大多数参数上没有显著差异。
这种深度学习算法允许没有超声检查经验的新手获得诊断性经胸超声心动图检查,以评估左心室大小和功能、右心室大小以及存在大量心包积液,将超声心动图的应用扩展到需要立即检查解剖结构和心脏功能的临床环境以及资源有限的环境。