Suppr超能文献

氮感应和调控网络:论时间与空间。

Nitrogen sensing and regulatory networks: it's about time and space.

机构信息

Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.

Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565 Santiago, Chile.

出版信息

Plant Cell. 2024 May 1;36(5):1482-1503. doi: 10.1093/plcell/koae038.

Abstract

A plant's response to external and internal nitrogen signals/status relies on sensing and signaling mechanisms that operate across spatial and temporal dimensions. From a comprehensive systems biology perspective, this involves integrating nitrogen responses in different cell types and over long distances to ensure organ coordination in real time and yield practical applications. In this prospective review, we focus on novel aspects of nitrogen (N) sensing/signaling uncovered using temporal and spatial systems biology approaches, largely in the model Arabidopsis. The temporal aspects span: transcriptional responses to N-dose mediated by Michaelis-Menten kinetics, the role of the master NLP7 transcription factor as a nitrate sensor, its nitrate-dependent TF nuclear retention, its "hit-and-run" mode of target gene regulation, and temporal transcriptional cascade identified by "network walking." Spatial aspects of N-sensing/signaling have been uncovered in cell type-specific studies in roots and in root-to-shoot communication. We explore new approaches using single-cell sequencing data, trajectory inference, and pseudotime analysis as well as machine learning and artificial intelligence approaches. Finally, unveiling the mechanisms underlying the spatial dynamics of nitrogen sensing/signaling networks across species from model to crop could pave the way for translational studies to improve nitrogen-use efficiency in crops. Such outcomes could potentially reduce the detrimental effects of excessive fertilizer usage on groundwater pollution and greenhouse gas emissions.

摘要

植物对外界和内部氮信号/状态的反应依赖于跨时空尺度运作的感知和信号机制。从综合系统生物学的角度来看,这涉及到整合不同细胞类型和长距离的氮反应,以确保器官的实时协调,并产生实际应用。在本次前瞻性综述中,我们主要关注使用时间和空间系统生物学方法揭示的氮(N)感知/信号的新方面,这些方法主要在模式植物拟南芥中进行。时间方面包括:Michaelis-Menten 动力学介导的 N 剂量转录响应、主 NLP7 转录因子作为硝酸盐传感器的作用、其硝酸盐依赖性 TF 核保留、其“打一枪换一个地方”的靶基因调控模式,以及通过“网络漫步”鉴定的时空转录级联。在根和根到茎的通讯中的细胞类型特异性研究中揭示了 N 感知/信号的空间方面。我们探索了使用单细胞测序数据、轨迹推断和伪时间分析以及机器学习和人工智能方法的新方法。最后,揭示不同物种中氮感知/信号网络空间动力学的机制,从模式生物到作物,可能为改善作物氮利用效率的转化研究铺平道路。这些结果可能会减少过度使用化肥对地下水污染和温室气体排放的不利影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ec4/11062454/bbf9245dc40d/koae038f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验