Dion Moïra B, Shah Shiraz A, Deng Ling, Thorsen Jonathan, Stokholm Jakob, Krogfelt Karen A, Schjørring Susanne, Horvath Philippe, Allard Antoine, Nielsen Dennis S, Petit Marie-Agnès, Moineau Sylvain
Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada.
Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae005.
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
CRISPR-Cas系统是细菌和古生菌抵御噬菌体及其他入侵核酸的防御机制。在大肠杆菌中,由于存在转录抑制因子,一般认为CRISPR-Cas系统在实验室条件下是无活性的。在自然分离株中,研究表明CRISPR阵列多年来保持稳定,且大多数间隔序列靶点(原间隔序列)仍不为人知。在此,我们重新审视自然大肠杆菌分离株中的CRISPR阵列,并使用生物信息学方法结合独特的生物学数据集,在病毒和细菌基因组中寻找间隔序列靶点。我们首先对从639名儿童一岁时粪便样本中分离出的1769株大肠杆菌的CRISPR1阵列进行了测序。我们构建了一个网络,网络中的边表示分离株之间共享间隔序列的数量。这些分离株被分为34个模块。在细菌基因组中搜索匹配的间隔序列发现,大肠杆菌的间隔序列几乎只靶向原噬菌体。虽然我们发现了自我靶向间隔序列的实例,但同一细菌基因组中涉及原噬菌体和间隔序列的情况很少见。对匹配间隔序列的广泛搜索还将已知大肠杆菌原间隔序列的文库扩充了60%。总之,这些结果支持了大肠杆菌的CRISPR-Cas是一种抗噬菌体系统的概念,并突出了重新考虑用于判定CRISPR-Cas系统活性的标准的重要性。