Suppr超能文献

基于来自不同供应商设备的胸部 CT 图像的深度度量学习的患者再识别。

Patient Re-Identification Based on Deep Metric Learning in Trunk Computed Tomography Images Acquired from Devices from Different Vendors.

机构信息

Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.

School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

J Imaging Inform Med. 2024 Jun;37(3):1124-1136. doi: 10.1007/s10278-024-01017-w. Epub 2024 Feb 16.

Abstract

During radiologic interpretation, radiologists read patient identifiers from the metadata of medical images to recognize the patient being examined. However, it is challenging for radiologists to identify "incorrect" metadata and patient identification errors. We propose a method that uses a patient re-identification technique to link correct metadata to an image set of computed tomography images of a trunk with lost or wrongly assigned metadata. This method is based on a feature vector matching technique that uses a deep feature extractor to adapt to the cross-vendor domain contained in the scout computed tomography image dataset. To identify "incorrect" metadata, we calculated the highest similarity score between a follow-up image and a stored baseline image linked to the correct metadata. The re-identification performance tests whether the image with the highest similarity score belongs to the same patient, i.e., whether the metadata attached to the image are correct. The similarity scores between the follow-up and baseline images for the same "correct" patients were generally greater than those for "incorrect" patients. The proposed feature extractor was sufficiently robust to extract individual distinguishable features without additional training, even for unknown scout computed tomography images. Furthermore, the proposed augmentation technique further improved the re-identification performance of the subset for different vendors by incorporating changes in width magnification due to changes in patient table height during each examination. We believe that metadata checking using the proposed method would help detect the metadata with an "incorrect" patient identifier assigned due to unavoidable errors such as human error.

摘要

在放射学解释过程中,放射科医生从医学图像的元数据中读取患者标识符,以识别正在检查的患者。然而,放射科医生很难识别“不正确”的元数据和患者标识错误。我们提出了一种方法,该方法使用患者重新识别技术将正确的元数据链接到具有丢失或错误分配元数据的躯干计算机断层扫描图像集。该方法基于特征向量匹配技术,该技术使用深度特征提取器来适应包含在透视计算机断层扫描图像数据集中的跨供应商域。为了识别“不正确”的元数据,我们计算了随访图像与链接到正确元数据的存储基线图像之间的最高相似度得分。重新识别性能测试具有最高相似度得分的图像是否属于同一患者,即图像上附加的元数据是否正确。对于相同的“正确”患者,随访图像和基线图像之间的相似度得分通常大于“不正确”患者的得分。所提出的特征提取器足够强大,可以在不进行额外训练的情况下提取出个体可区分的特征,即使是对于未知的透视计算机断层扫描图像也是如此。此外,所提出的扩充技术通过结合由于每次检查中患者工作台高度的变化而导致的宽度放大的变化,进一步提高了不同供应商子集的重新识别性能。我们相信,使用所提出的方法进行元数据检查将有助于检测由于人为错误等不可避免的错误而分配的“不正确”患者标识符的元数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ad/11169436/6ca4050515bc/10278_2024_1017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验