Suppr超能文献

基于深度学习的智能 PACS 中 CBIR 的组织病理图像深度特征表示。

Histopathological Image Deep Feature Representation for CBIR in Smart PACS.

机构信息

Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio 21, Naples, 80125, Italy.

Department of Advanced Biomedical Sciences, Pathology Section, University of Naples Federico II, Naples, 80131, Italy.

出版信息

J Digit Imaging. 2023 Oct;36(5):2194-2209. doi: 10.1007/s10278-023-00832-x. Epub 2023 Jun 9.

Abstract

Pathological Anatomy is moving toward computerizing processes mainly due to the extensive digitization of histology slides that resulted in the availability of many Whole Slide Images (WSIs). Their use is essential, especially in cancer diagnosis and research, and raises the pressing need for increasingly influential information archiving and retrieval systems. Picture Archiving and Communication Systems (PACSs) represent an actual possibility to archive and organize this growing amount of data. The design and implementation of a robust and accurate methodology for querying them in the pathology domain using a novel approach are mandatory. In particular, the Content-Based Image Retrieval (CBIR) methodology can be involved in the PACSs using a query-by-example task. In this context, one of many crucial points of CBIR concerns the representation of images as feature vectors, and the accuracy of retrieval mainly depends on feature extraction. Thus, our study explored different representations of WSI patches by features extracted from pre-trained Convolution Neural Networks (CNNs). In order to perform a helpful comparison, we evaluated features extracted from different layers of state-of-the-art CNNs using different dimensionality reduction techniques. Furthermore, we provided a qualitative analysis of obtained results. The evaluation showed encouraging results for our proposed framework.

摘要

病理解剖学正朝着主要依靠组织学幻灯片广泛数字化的方向发展,这导致了大量全玻片图像(WSI)的出现。它们的使用至关重要,特别是在癌症诊断和研究方面,这就迫切需要越来越有影响力的信息存档和检索系统。图像存档与通信系统(PACS)是存档和组织这些不断增长的数据的实际可能性。使用新方法在病理学领域中查询它们的强大而准确的方法的设计和实现是强制性的。特别是,内容型图像检索(CBIR)方法可以通过示例查询任务应用于 PACS。在这种情况下,CBIR 的许多关键问题之一涉及将图像表示为特征向量,而检索的准确性主要取决于特征提取。因此,我们的研究通过从预先训练的卷积神经网络(CNN)中提取的特征来探索 WSI 补丁的不同表示形式。为了进行有帮助的比较,我们使用不同的降维技术评估了从最先进的 CNN 的不同层中提取的特征。此外,我们对获得的结果进行了定性分析。评估结果对我们提出的框架显示出令人鼓舞的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d33/10501985/069f8fbad491/10278_2023_832_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验