Moody College of Communication, University of Texas at Austin, Austin, TX, USA.
Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
Nicotine Tob Res. 2024 Feb 15;26(Supplement_1):S36-S42. doi: 10.1093/ntr/ntad184.
Previous research has identified abundant e-cigarette content on social media using primarily text-based approaches. However, frequently used social media platforms among youth, such as TikTok, contain primarily visual content, requiring the ability to detect e-cigarette-related content across large sets of videos and images. This study aims to use a computer vision technique to detect e-cigarette-related objects in TikTok videos.
We searched 13 hashtags related to vaping on TikTok (eg, #vape) in November 2022 and obtained 826 still images extracted from a random selection of 254 posts. We annotated images for the presence of vaping devices, hands, and/or vapor clouds. We developed a YOLOv7-based computer vision model to detect these objects using 85% of extracted images (N = 705) for training and 15% (N = 121) for testing.
Our model's recall value was 0.77 for all three classes: vape devices, hands, and vapor. Our model correctly classified vape devices 92.9% of the time, with an average F1 score of 0.81.
The findings highlight the importance of having accurate and efficient methods to identify e-cigarette content on popular video-based social media platforms like TikTok. Our findings indicate that automated computer vision methods can successfully detect a range of e-cigarette-related content, including devices and vapor clouds, across images from TikTok posts. These approaches can be used to guide research and regulatory efforts.
Object detection, a computer vision machine learning model, can accurately and efficiently identify e-cigarette content on a primarily visual-based social media platform by identifying the presence of vaping devices and evidence of e-cigarette use (eg, hands and vapor clouds). The methods used in this study can inform computational surveillance systems for detecting e-cigarette content on video- and image-based social media platforms to inform and enforce regulations of e-cigarette content on social media.
先前的研究已经使用主要基于文本的方法在社交媒体上发现了大量电子烟内容。然而,青少年常用的社交媒体平台,如 TikTok,主要包含视觉内容,需要能够在大量视频和图像中检测到与电子烟相关的内容。本研究旨在使用计算机视觉技术来检测 TikTok 视频中的电子烟相关对象。
我们于 2022 年 11 月在 TikTok 上搜索了 13 个与蒸气相关的标签(例如,#vape),并从 254 个帖子中随机选择提取了 826 张静态图像。我们对图像进行了蒸气设备、手和/或蒸气云存在的标注。我们开发了一种基于 YOLOv7 的计算机视觉模型,使用提取图像的 85%(N=705)进行训练,使用 15%(N=121)进行测试,来检测这些对象。
我们的模型对所有三个类别(蒸气设备、手和蒸气)的召回值为 0.77。我们的模型对蒸气设备的分类准确率为 92.9%,平均 F1 评分为 0.81。
研究结果强调了在像 TikTok 这样的流行视频社交媒体平台上,拥有准确和高效的方法来识别电子烟内容的重要性。我们的研究结果表明,自动化计算机视觉方法可以成功地识别一系列与电子烟相关的内容,包括设备和蒸气云,涵盖 TikTok 帖子中的图像。这些方法可以用于指导研究和监管工作。
对象检测,一种计算机视觉机器学习模型,可以通过识别蒸气设备的存在和电子烟使用的证据(例如,手和蒸气云),在主要基于视觉的社交媒体平台上准确而高效地识别电子烟内容。本研究中使用的方法可以为基于视频和图像的社交媒体平台上的电子烟内容检测提供信息,并为社交媒体上的电子烟内容监管提供信息。