Luo Xiao, Bao Jing-Dong, Fan Wen-Yue
Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China.
Phys Rev E. 2024 Jan;109(1-1):014130. doi: 10.1103/PhysRevE.109.014130.
Anomalous diffusive behaviors are observed in highly inhomogeneous but relatively stable environments such as intracellular media and are increasingly attracting attention. In this paper we develop a coupled continuous-time random walk model in which the waiting time is power-law coupled with the local environmental diffusion coefficient. We provide two forms of the waiting time density, namely, a heavy-tailed density and an exponential density. For different waiting time densities, anomalous diffusions with the diffusion exponent between 0 and 2 and Brownian yet non-Gaussian diffusion can be realized within the present model. The diffusive behaviors are analyzed and discussed by deriving the mean-squared displacement and probability density function. In addition we derive the effective jump length density corresponding to the decoupled form to help distinguish the diffusion types. Our model unifies two kinds of anomalous diffusive behavior with different characteristics in the same inhomogeneous environment into a theoretical framework. The model interprets the random motion of particles in a complex inhomogeneous environment and reproduces the experimental results of different biological and physical systems.
在高度不均匀但相对稳定的环境(如细胞内介质)中观察到了异常扩散行为,并且这种行为越来越受到关注。在本文中,我们开发了一种耦合连续时间随机游走模型,其中等待时间与局部环境扩散系数呈幂律耦合。我们提供了两种等待时间密度形式,即重尾密度和指数密度。对于不同的等待时间密度,在当前模型中可以实现扩散指数在0到2之间的异常扩散以及布朗但非高斯扩散。通过推导均方位移和概率密度函数来分析和讨论扩散行为。此外,我们推导了对应于解耦形式的有效跳跃长度密度,以帮助区分扩散类型。我们的模型将同一不均匀环境中具有不同特征的两种异常扩散行为统一到一个理论框架中。该模型解释了粒子在复杂不均匀环境中的随机运动,并重现了不同生物和物理系统的实验结果。