Radiology and Imaging Sciences, Clinical Center,, National Institutes of Health, 10 Center Drive, 1C352, Bethesda, MD, 20892, USA.
Artificial Intelligence Resource, National Institutes of Health, Bethesda, USA.
Abdom Radiol (NY). 2024 Apr;49(4):1194-1201. doi: 10.1007/s00261-023-04172-w. Epub 2024 Feb 17.
Accurate diagnosis and treatment of kidney tumors greatly benefit from automated solutions for detection and classification on MRI. In this study, we explore the application of a deep learning algorithm, YOLOv7, for detecting kidney tumors on contrast-enhanced MRI.
We assessed the performance of YOLOv7 tumor detection on excretory phase MRIs in a large institutional cohort of patients with RCC. Tumors were segmented on MRI using ITK-SNAP and converted to bounding boxes. The cohort was randomly divided into ten benchmarks for training and testing the YOLOv7 algorithm. The model was evaluated using both 2-dimensional and a novel in-house developed 2.5-dimensional approach. Performance measures included F1, Positive Predictive Value (PPV), Sensitivity, F1 curve, PPV-Sensitivity curve, Intersection over Union (IoU), and mean average PPV (mAP).
A total of 326 patients with 1034 tumors with 7 different pathologies were analyzed across ten benchmarks. The average 2D evaluation results were as follows: Positive Predictive Value (PPV) of 0.69 ± 0.05, sensitivity of 0.39 ± 0.02, and F1 score of 0.43 ± 0.03. For the 2.5D evaluation, the average results included a PPV of 0.72 ± 0.06, sensitivity of 0.61 ± 0.06, and F1 score of 0.66 ± 0.04. The best model performance demonstrated a 2.5D PPV of 0.75, sensitivity of 0.69, and F1 score of 0.72.
Using computer vision for tumor identification is a cutting-edge and rapidly expanding subject. In this work, we showed that YOLOv7 can be utilized in the detection of kidney cancers.
准确诊断和治疗肾肿瘤得益于 MRI 上用于检测和分类的自动化解决方案。在这项研究中,我们探索了使用深度学习算法 YOLOv7 检测对比增强 MRI 上肾肿瘤的应用。
我们评估了 YOLOv7 肿瘤检测在 RCC 患者大型机构队列排泄期 MRI 中的性能。使用 ITK-SNAP 在 MRI 上对肿瘤进行分割,并将其转换为边界框。该队列随机分为十个基准用于训练和测试 YOLOv7 算法。使用二维和我们新开发的二维半方法对模型进行评估。性能指标包括 F1、阳性预测值(PPV)、灵敏度、F1 曲线、PPV-灵敏度曲线、交并比(IoU)和平均阳性预测值(mAP)。
总共分析了十个基准中的 326 名患者的 1034 个肿瘤,其中 7 种不同的病理类型。平均二维评估结果如下:阳性预测值(PPV)为 0.69±0.05,灵敏度为 0.39±0.02,F1 评分为 0.43±0.03。对于二维半评估,平均结果包括 PPV 为 0.72±0.06,灵敏度为 0.61±0.06,F1 评分为 0.66±0.04。最佳模型性能表现为二维半 PPV 为 0.75、灵敏度为 0.69 和 F1 评分为 0.72。
使用计算机视觉进行肿瘤识别是一个前沿且快速发展的领域。在这项工作中,我们表明 YOLOv7 可用于检测肾癌。