Suppr超能文献

基于多中心数据库的深度学习算法在增强 CT 中全自动检测直径≤4cm 小肾癌

Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database.

机构信息

From the Department of Radiology, Keio University School of Medicine, Tokyo.

Department of Radiology, Juntendo University, Tokyo.

出版信息

Invest Radiol. 2022 May 1;57(5):327-333. doi: 10.1097/RLI.0000000000000842.

Abstract

OBJECTIVES

Renal cell carcinoma (RCC) is often found incidentally in asymptomatic individuals undergoing abdominal computed tomography (CT) examinations. The purpose of our study is to develop a deep learning-based algorithm for fully automated detection of small (≤4 cm) RCCs in contrast-enhanced CT images using a multicenter database and to evaluate its performance.

MATERIALS AND METHODS

For the algorithmic detection of RCC, we retrospectively selected contrast-enhanced CT images of patients with histologically confirmed single RCC with a tumor diameter of 4 cm or less between January 2005 and May 2020 from 7 centers in the Japan Medical Image Database. A total of 453 patients from 6 centers were selected as dataset A, and 132 patients from 1 center were selected as dataset B. Dataset A was used for training and internal validation. Dataset B was used only for external validation. Nephrogenic phase images of multiphase CT or single-phase postcontrast CT images were used. Our algorithm consisted of 2-step segmentation models, kidney segmentation and tumor segmentation. For internal validation with dataset A, 10-fold cross-validation was applied. For external validation, the models trained with dataset A were tested on dataset B. The detection performance of the models was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC).

RESULTS

The mean ± SD diameters of RCCs in dataset A and dataset B were 2.67 ± 0.77 cm and 2.64 ± 0.78 cm, respectively. Our algorithm yielded an accuracy, sensitivity, and specificity of 88.3%, 84.3%, and 92.3%, respectively, with dataset A and 87.5%, 84.8%, and 90.2%, respectively, with dataset B. The AUC of the algorithm with dataset A and dataset B was 0.930 and 0.933, respectively.

CONCLUSIONS

The proposed deep learning-based algorithm achieved high accuracy, sensitivity, specificity, and AUC for the detection of small RCCs with both internal and external validations, suggesting that this algorithm could contribute to the early detection of small RCCs.

摘要

目的

肾细胞癌(RCC)常发生于无症状个体进行腹部计算机断层扫描(CT)检查时。本研究旨在开发一种基于深度学习的算法,用于使用多中心数据库自动检测对比增强 CT 图像中小(≤4cm)RCC,并评估其性能。

材料与方法

为了进行 RCC 的算法检测,我们回顾性地从 2005 年 1 月至 2020 年 5 月的 7 个中心选择了经组织学证实的单个肿瘤直径≤4cm 的 RCC 患者的增强 CT 图像。从 6 个中心选择了 453 名患者作为数据集 A,从 1 个中心选择了 132 名患者作为数据集 B。数据集 A 用于训练和内部验证。数据集 B 仅用于外部验证。使用多期 CT 的肾静脉期图像或单相增强后 CT 图像。我们的算法包括 2 步分割模型,即肾脏分割和肿瘤分割。对于数据集 A 的内部验证,采用 10 折交叉验证。对于外部验证,在数据集 B 上测试用数据集 A 训练的模型。使用准确率、灵敏度、特异性和曲线下面积(AUC)评估模型的检测性能。

结果

数据集 A 和数据集 B 中 RCC 的平均±SD 直径分别为 2.67±0.77cm 和 2.64±0.78cm。我们的算法在数据集 A 中获得了 88.3%、84.3%和 92.3%的准确率、灵敏度和特异性,在数据集 B 中获得了 87.5%、84.8%和 90.2%的准确率、灵敏度和特异性。算法在数据集 A 和数据集 B 的 AUC 分别为 0.930 和 0.933。

结论

该基于深度学习的算法在内部和外部验证中均实现了小 RCC 检测的高准确率、灵敏度、特异性和 AUC,表明该算法有助于早期检测小 RCC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验