Suppr超能文献

利用光电容积脉搏波描记(PPG)信号中的连续收缩压差值来估计呼吸频率。

The use of successive systolic differences in photoplethysmographic (PPG) signals for respiratory rate estimation.

作者信息

Argüello-Prada Erick Javier, Marcillo Ibarra Katherin Daniela, Díaz Jiménez Kevin Leonardo

机构信息

Programa de Bioingeniería, Facultad de Ingeniería, Universidad Santiago de Cali, Cali-Colombia, Calle 5 # 62-00 Barrio Pampalinda, Santiago de Cali, Valle del Cauca, Colombia.

出版信息

Heliyon. 2024 Feb 8;10(4):e26036. doi: 10.1016/j.heliyon.2024.e26036. eCollection 2024 Feb 29.

Abstract

Most PPG-based methods for extracting the respiratory rate (RR) rely on changes in the PPG signal's amplitude, baseline, or frequency. However, several other parameters may provide more valuable information for accurate RR computation. In this study, we explored the capabilities of the respiratory-induced variations in successive systolic differences (RISSDV) of PPG signals to estimate RR. We partitioned fifty-three publicly available recordings into eight 1-min segments and identified peaks and troughs of the PPG signals to quantify respiratory-induced variations in amplitude (RIAV), baseline (RIIV), frequency (RIFV), and peak-to-peak amplitude differences (RISSDV). RR values were extracted by determining the peak frequency of the power spectral density of the four variations and the reference respiratory signal. We assessed each feature's performance by computing the root-mean-squared (RMSE) and mean absolute errors (MAE). RISSDV errors were significantly lower than those of RIAV (RMSE and MAE:  < 0.001), RIIV (RMSE:  < 0.01; MAE  < 0.05), and RIFV (RMSE and MAE:  < 0.001), and it appeared less sensitive to absent or missed PPG pulses than respiratory-induced frequency variations. Further research is necessary to extrapolate these findings to subjects under ambulatory rather than stationary conditions, including pediatric and neonatal populations.

摘要

大多数基于光电容积脉搏波描记法(PPG)提取呼吸频率(RR)的方法都依赖于PPG信号幅度、基线或频率的变化。然而,其他几个参数可能为准确计算RR提供更有价值的信息。在本研究中,我们探讨了PPG信号连续收缩压差值的呼吸诱导变化(RISSDV)用于估计RR的能力。我们将53个公开可用的记录分成8个1分钟的片段,并识别PPG信号的峰值和谷值,以量化呼吸诱导的幅度变化(RIAV)、基线变化(RIIV)、频率变化(RIFV)以及峰峰值幅度差(RISSDV)。通过确定四种变化的功率谱密度的峰值频率和参考呼吸信号来提取RR值。我们通过计算均方根误差(RMSE)和平均绝对误差(MAE)来评估每个特征的性能。RISSDV的误差显著低于RIAV(RMSE和MAE:<0.001)、RIIV(RMSE:<0.01;MAE<0.05)和RIFV(RMSE和MAE:<0.001),并且它对PPG脉搏缺失或漏检的敏感性似乎低于呼吸诱导的频率变化。有必要进一步开展研究,将这些发现推广到动态而非静止状态下的受试者,包括儿科和新生儿群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b1/10869914/ab422bb84025/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验