Suppr超能文献

在推断对非同义突变的选择时非中性同义突变的影响。

The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations.

作者信息

Zurita Aina Martinez I, Kyriazis Christopher C, Lohmueller Kirk E

机构信息

Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA.

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.

出版信息

bioRxiv. 2024 Feb 8:2024.02.07.579314. doi: 10.1101/2024.02.07.579314.

Abstract

The distribution of fitness effects (DFE) describes the proportions of new mutations that have different effects on reproductive fitness. Accurate measurements of the DFE are important because the DFE is a fundamental parameter in evolutionary genetics and has implications for our understanding of other phenomena like complex disease or inbreeding depression. Current computational methods to infer the DFE for nonsynonymous mutations from natural variation first estimate demographic parameters from synonymous variants to control for the effects of demography and background selection. Then, conditional on these parameters, the DFE is then inferred for nonsynonymous mutations. This approach relies on the assumption that synonymous variants are neutrally evolving. However, some evidence points toward synonymous mutations having measurable effects on fitness. To test whether selection on synonymous mutations affects inference of the DFE of nonsynonymous mutations, we simulated several possible models of selection on synonymous mutations using SLiM and attempted to recover the DFE of nonsynonymous mutations using Fit∂a∂i, a common method for DFE inference. Our results show that the presence of selection on synonymous variants leads to incorrect inferences of recent population growth. Furthermore, under certain parameter combinations, inferences of the DFE can have an inflated proportion of highly deleterious nonsynonymous mutations. However, this bias can be eliminated if the correct demographic parameters are used for DFE inference instead of the biased ones inferred from synonymous variants. Our work demonstrates how unmodeled selection on synonymous mutations may affect downstream inferences of the DFE.

摘要

适合度效应分布(DFE)描述了对生殖适合度有不同影响的新突变的比例。准确测量DFE很重要,因为DFE是进化遗传学中的一个基本参数,并且对于我们理解诸如复杂疾病或近亲繁殖衰退等其他现象具有重要意义。当前从自然变异中推断非同义突变DFE的计算方法首先从同义变异中估计群体参数,以控制群体结构和背景选择的影响。然后,基于这些参数,推断非同义突变的DFE。这种方法依赖于同义变异是中性进化的假设。然而,一些证据表明同义突变对适合度有可测量的影响。为了测试对同义突变的选择是否会影响非同义突变DFE的推断,我们使用SLiM模拟了几种可能的同义突变选择模型,并尝试使用Fit∂a∂i(一种常用的DFE推断方法)来恢复非同义突变的DFE。我们的结果表明,对同义变异的选择会导致对近期群体增长的错误推断。此外,在某些参数组合下,DFE的推断可能会使高度有害的非同义突变比例过高。然而,如果使用正确的群体参数而不是从同义变异推断出的有偏差的参数来进行DFE推断,这种偏差可以消除。我们的工作证明了对同义突变的未建模选择可能会如何影响DFE的下游推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a43/10871344/7e7a31b98e19/nihpp-2024.02.07.579314v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验