文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Increasing segmentation performance with synthetic agar plate images.

作者信息

Cicatka Michal, Burget Radim, Karasek Jan, Lancos Jan

机构信息

Brno University of Technology, Faculty of Electrical Engineering and Communications, Dept. of Telecommunication, Technicka 12, Brno, 61600, Czech Republic.

R&D Automation, Microbiology & Diagnostics, Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, Bremen, 28359, Germany.

出版信息

Heliyon. 2024 Feb 7;10(3):e25714. doi: 10.1016/j.heliyon.2024.e25714. eCollection 2024 Feb 15.


DOI:10.1016/j.heliyon.2024.e25714
PMID:38371986
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10873726/
Abstract

BACKGROUND: Agar plate analysis is vital for microbiological testing in industries like food, pharmaceuticals, and biotechnology. Manual inspection is slow, laborious, and error-prone, while existing automated systems struggle with the complexity of real-world agar plates. A shortage of diverse datasets hinders the development and evaluation of robust automated systems. METHODS: In this paper, two new annotated datasets and a novel methodology for synthetic agar plate generation are presented. The datasets comprise 854 images of cultivated agar plates and 1,588 images of empty agar plates, encompassing various agar plate types and microorganisms. These datasets are an extension of the publicly available BRUKERCOLONY dataset, collectively forming one of the largest publicly available annotated datasets for research. The methodology is based on an efficient image generation pipeline that also simulates cultivation-related phenomena such as haemolysis or chromogenic reactions. RESULTS: The augmentations significantly improved the Dice coefficient of trained U-Net models, increasing it from 0.671 to 0.721. Furthermore, training the U-Net model with a combination of real and 150% synthetic data demonstrated its efficacy, yielding a remarkable Dice coefficient of 0.729, a substantial improvement from the baseline of 0.518. UNet3+ exhibited the highest performance among the U-Net and Attention U-Net architectures, achieving a Dice coefficient of 0.767. CONCLUSIONS: Our experiments showed the methodology's applicability to real-world scenarios, even with highly variable agar plates. Our paper contributes to automating agar plate analysis by presenting a new dataset and effective methodology, potentially enhancing fully automated microbiological testing.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/009ddfcee8fe/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/621f53b747e6/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/664ff6c1131f/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/764648230863/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/fd01560e3bed/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/cf9e44f2d5a6/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/770dfd3b5011/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/75589ee77316/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/d9fe08e0ff1d/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/3279c58e1846/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/77ec6c07e184/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/f5a262794d69/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/009ddfcee8fe/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/621f53b747e6/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/664ff6c1131f/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/764648230863/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/fd01560e3bed/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/cf9e44f2d5a6/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/770dfd3b5011/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/75589ee77316/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/d9fe08e0ff1d/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/3279c58e1846/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/77ec6c07e184/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/f5a262794d69/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc1/10873726/009ddfcee8fe/gr012.jpg

相似文献

[1]
Increasing segmentation performance with synthetic agar plate images.

Heliyon. 2024-2-7

[2]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

[3]
Fully automated bladder tumor segmentation from T2 MRI images using 3D U-Net algorithm.

Front Oncol. 2023-3-9

[4]
Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.

Phys Med Biol. 2022-3-29

[5]
Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.

Comput Methods Programs Biomed. 2020-8

[6]
Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.

Top Magn Reson Imaging. 2022-6-1

[7]
VertXNet: an ensemble method for vertebral body segmentation and identification from cervical and lumbar spinal X-rays.

Sci Rep. 2024-2-9

[8]
Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.

Eur Radiol. 2020-3

[9]
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation.

Sci Rep. 2022-9-1

[10]
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

Med Phys. 2017-2

本文引用的文献

[1]
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation.

Heliyon. 2023-11-17

[2]
Brain tumor feature extraction and edge enhancement algorithm based on U-Net network.

Heliyon. 2023-11-21

[3]
Validation of the Colibrí Instrument for Automated Preparation of MALDI-TOF MS Targets for Yeast Identification.

J Clin Microbiol. 2022-7-20

[4]
Generation of microbial colonies dataset with deep learning style transfer.

Sci Rep. 2022-3-25

[5]
CellProfiler 4: improvements in speed, utility and usability.

BMC Bioinformatics. 2021-9-10

[6]
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017

[7]
Use of artificial intelligence for tailored routine urine analyses.

Clin Microbiol Infect. 2021-8

[8]
Experimental setup and image processing method for automatic enumeration of bacterial colonies on agar plates.

PLoS One. 2020-6-24

[9]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

[10]
Advantages and limitations of total laboratory automation: a personal overview.

Clin Chem Lab Med. 2019-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索