Suppr超能文献

基于图神经网络的视觉感知多语义解码。

Multi-Semantic Decoding of Visual Perception with Graph Neural Networks.

机构信息

The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

出版信息

Int J Neural Syst. 2024 Apr;34(4):2450016. doi: 10.1142/S0129065724500163. Epub 2024 Feb 17.

Abstract

Constructing computational decoding models to account for the cortical representation of semantic information plays a crucial role in understanding visual perception. The human visual system processes interactive relationships among different objects when perceiving the semantic contents of natural visions. However, the existing semantic decoding models commonly regard categories as completely separate and independent visually and semantically and rarely consider the relationships from prior information. In this work, a novel semantic graph learning model was proposed to decode multiple semantic categories of perceived natural images from brain activity. The proposed model was validated on the functional magnetic resonance imaging data collected from five normal subjects while viewing 2750 natural images comprising 52 semantic categories. The results showed that the Graph Neural Network-based decoding model achieved higher accuracies than other deep neural network models. Moreover, the co-occurrence probability among semantic categories showed a significant correlation with the decoding accuracy. Additionally, the results suggested that semantic content organized in a hierarchical way with higher visual areas was more closely related to the internal visual experience. Together, this study provides a superior computational framework for multi-semantic decoding that supports the visual integration mechanism of semantic processing.

摘要

构建能够解释语义信息的皮层表达的计算解码模型,对于理解视觉感知起着至关重要的作用。人类视觉系统在感知自然视觉的语义内容时,会处理不同物体之间的交互关系。然而,现有的语义解码模型通常将类别视为完全独立的视觉和语义实体,很少考虑来自先验信息的关系。在这项工作中,提出了一种新的语义图学习模型,用于从大脑活动中解码感知自然图像的多个语义类别。该模型在 5 名正常受试者观看包含 52 个语义类别的 2750 张自然图像的功能磁共振成像数据上进行了验证。结果表明,基于图神经网络的解码模型比其他深度神经网络模型具有更高的准确性。此外,语义类别之间的共现概率与解码准确性显著相关。此外,结果表明,以更高的视觉区域组织的层次化语义内容与内部视觉体验更为密切相关。总的来说,这项研究为多语义解码提供了一个优越的计算框架,支持语义处理的视觉整合机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验