Suppr超能文献

知觉到图像:从视觉感知的大脑活动中重建自然图像。

Perception-to-Image: Reconstructing Natural Images from the Brain Activity of Visual Perception.

机构信息

MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.

State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

Ann Biomed Eng. 2020 Sep;48(9):2323-2332. doi: 10.1007/s10439-020-02502-3. Epub 2020 Apr 13.

Abstract

The reappearance of human visual perception is a challenging topic in the field of brain decoding. Due to the complexity of visual stimuli and the constraints of fMRI data collection, the present decoding methods can only reconstruct the basic outline or provide similar figures/features of the perceived natural stimuli. To achieve a high-quality and high-resolution reconstruction of natural images from brain activity, this paper presents an end-to-end perception reconstruction model called the similarity-conditions generative adversarial network (SC-GAN), where visually perceptible images are reconstructed based on human visual cortex responses. The SC-GAN extracts the high-level semantic features of natural images and corresponding visual cortical responses and then introduces the semantic features as conditions of generative adversarial networks (GANs) to realize the perceptual reconstruction of visual images. The experimental results show that the semantic features extracted from SC-GAN play a key role in the reconstruction of natural images. The similarity between the presented and reconstructed images obtained by the SC-GAN is significantly higher than that obtained by a condition generative adversarial network (C-GAN). The model we proposed offers a potential perspective for decoding the brain activity of complex natural stimuli.

摘要

人类视觉感知的再现是大脑解码领域的一个具有挑战性的课题。由于视觉刺激的复杂性和 fMRI 数据采集的限制,目前的解码方法只能重建感知到的自然刺激的基本轮廓或提供类似的图形/特征。为了实现从大脑活动中对自然图像进行高质量和高分辨率的重建,本文提出了一种端到端的感知重建模型,称为相似条件生成对抗网络(SC-GAN),它基于人类视觉皮层反应来重建可视觉感知的图像。SC-GAN 提取自然图像的高级语义特征和相应的视觉皮层反应,然后将语义特征作为生成对抗网络(GAN)的条件引入,以实现视觉图像的感知重建。实验结果表明,SC-GAN 提取的语义特征在自然图像的重建中起着关键作用。SC-GAN 获得的呈现图像和重建图像之间的相似性明显高于条件生成对抗网络(C-GAN)获得的相似性。我们提出的模型为解码复杂自然刺激的大脑活动提供了一个潜在的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验