IEEE Trans Neural Syst Rehabil Eng. 2024;32:875-886. doi: 10.1109/TNSRE.2024.3366930. Epub 2024 Feb 22.
Deep learning (DL)-based methods have been successfully employed as asynchronous classification algorithms in the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. However, these methods often suffer from the limited amount of electroencephalography (EEG) data, leading to overfitting. This study proposes an effective data augmentation approach called EEG mask encoding (EEG-ME) to mitigate overfitting. EEG-ME forces models to learn more robust features by masking partial EEG data, leading to enhanced generalization capabilities of models. Three different network architectures, including an architecture integrating convolutional neural networks (CNN) with Transformer (CNN-Former), time domain-based CNN (tCNN), and a lightweight architecture (EEGNet) are utilized to validate the effectiveness of EEG-ME on publicly available benchmark and BETA datasets. The results demonstrate that EEG-ME significantly enhances the average classification accuracy of various DL-based methods with different data lengths of time windows on two public datasets. Specifically, CNN-Former, tCNN, and EEGNet achieve respective improvements of 3.18%, 1.42%, and 3.06% on the benchmark dataset as well as 11.09%, 3.12%, and 2.81% on the BETA dataset, with the 1-second time window as an example. The enhanced performance of SSVEP classification with EEG-ME promotes the implementation of the asynchronous SSVEP-BCI system, leading to improved robustness and flexibility in human-machine interaction.
深度学习(DL)方法已成功用作基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统中的异步分类算法。然而,这些方法通常受到脑电图(EEG)数据量有限的限制,导致过拟合。本研究提出了一种有效的数据增强方法,称为 EEG 掩蔽编码(EEG-ME),以减轻过拟合。EEG-ME 通过掩蔽部分 EEG 数据迫使模型学习更稳健的特征,从而提高模型的泛化能力。利用三种不同的网络架构,包括集成卷积神经网络(CNN)和 Transformer(CNN-Former)、基于时域的 CNN(tCNN)和轻量级架构(EEGNet),验证 EEG-ME 在公开可用的基准和 BETA 数据集上对各种基于 DL 的方法的有效性。结果表明,EEG-ME 显著提高了不同基于 DL 的方法在两个公共数据集上不同时间窗数据长度的平均分类准确率。具体来说,CNN-Former、tCNN 和 EEGNet 在基准数据集上分别提高了 3.18%、1.42%和 3.06%,在 BETA 数据集上分别提高了 11.09%、3.12%和 2.81%,以 1 秒时间窗为例。EEG-ME 增强 SSVEP 分类性能促进了异步 SSVEP-BCI 系统的实现,提高了人机交互的稳健性和灵活性。