IEEE J Biomed Health Inform. 2024 Nov;28(11):6581-6593. doi: 10.1109/JBHI.2024.3454158. Epub 2024 Nov 6.
Steady-state visual evoked potential (SSVEP) is a commonly used brain-computer interface (BCI) paradigm. The performance of cross-subject SSVEP classification has a strong impact on SSVEP-BCI. This study designed a cross subject generalization SSVEP classification model based on an improved transformer structure that uses domain generalization (DG). The global receptive field of multi-head self-attention is used to learn the global generalized SSVEP temporal information across subjects. This is combined with a parallel local convolution module, designed to avoid oversmoothing the oscillation characteristics of temporal SSVEP data and better fit the feature. Moreover, to improve the cross-subject calibration-free SSVEP classification performance, an DG method named StableNet is combined with the proposed convolutional transformer structure to form the DG-Conformer method, which can eliminate spurious correlations between SSVEP discriminative information and background noise to improve cross-subject generalization. Experiments on two public datasets, Benchmark and BETA, demonstrated the outstanding performance of the proposed DG-Conformer compared with other calibration-free methods, FBCCA, tt-CCA, Compact-CNN, FB-tCNN, and SSVEPNet. Additionally, DG-Conformer outperforms the classic calibration-required algorithms eCCA, eTRCA and eSSCOR when calibration is used. An incomplete partial stimulus calibration scheme was also explored on the Benchmark dataset, and it was demonstrated to be a potential solution for further high-performance personalized SSVEP-BCI with quick calibration.
稳态视觉诱发电位 (SSVEP) 是一种常用的脑机接口 (BCI) 范式。跨被试 SSVEP 分类的性能对 SSVEP-BCI 有很大的影响。本研究设计了一种基于改进的 Transformer 结构的跨被试泛化 SSVEP 分类模型,该模型使用域泛化 (DG)。多头自注意力的全局感受野用于学习跨被试的全局泛化 SSVEP 时间信息。这与并行局部卷积模块相结合,旨在避免对时间 SSVEP 数据的振荡特征进行过度平滑处理,从而更好地拟合特征。此外,为了提高跨被试无校准 SSVEP 分类性能,将一种名为 StableNet 的 DG 方法与所提出的卷积 Transformer 结构相结合,形成 DG-Conformer 方法,可以消除 SSVEP 判别信息与背景噪声之间的虚假相关性,从而提高跨被试泛化能力。在两个公共数据集 Benchmark 和 BETA 上的实验表明,与其他无校准方法 FBCCA、tt-CCA、Compact-CNN、FB-tCNN 和 SSVEPNet 相比,所提出的 DG-Conformer 具有出色的性能。此外,当使用校准时,DG-Conformer 优于经典的需要校准的算法 eCCA、eTRCA 和 eSSCOR。还在 Benchmark 数据集上探索了不完整的部分刺激校准方案,证明了它是具有快速校准的高性能个性化 SSVEP-BCI 的潜在解决方案。