Hu En, Yang Tao, Cai Linsheng, Ouyang Jiahe, Wang Fei, Li Zongman, Wang Yingchao, Xing Xiaohua, Liu Xiaolong
The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
J Proteome Res. 2024 Mar 1;23(3):1062-1074. doi: 10.1021/acs.jproteome.3c00813. Epub 2024 Feb 19.
Hepatocellular carcinoma (HCC) is susceptible to early recurrence, but it lacks effective predictive biomarkers. In this study, we retrospectively selected 179 individuals as a discovery cohort (126 HCC patients and 53 liver cirrhosis (LC) patients) for screening candidate serum biomarkers of early recurrence based on data independent acquisition-mass spectrometry strategy. And then, the candidate biomarkers were validated in an additional independent cohort with 192 individuals (142 HCC patients and 50 LC patients) using parallel reaction monitoring targeted quantitative techniques (PXD047852). Eventually, we validated that gelsolin (GSN) concentrations were significantly lower in HCC than in LC ( < 0.0001), patients with low GSN concentrations had a poor prognosis ( < 0.0001), and GSN concentrations were significantly lower in early recurrence HCC than in late recurrence HCC ( < 0.0001). These trends were also observed in alpha-fetoprotein (AFP)-negative HCC patients. The area under the curve of machine-learning-based predictive model (GSN and microvascular invasion) for predicting early recurrence risk reached 0.803 (95% confidence interval (CI): 0.786-0.820) and maintained the same efficacy in AFP-negative patients. In conclusion, GSN is a novel serum biomarker for early recurrence of HCC. The model could provide timely warning to HCC patients at high risk of recurrence.
肝细胞癌(HCC)易早期复发,但缺乏有效的预测生物标志物。在本研究中,我们基于数据非依赖采集-质谱策略,回顾性选取了179例个体作为发现队列(126例HCC患者和53例肝硬化(LC)患者),以筛选早期复发的候选血清生物标志物。然后,使用平行反应监测靶向定量技术(PXD047852)在另一个包含192例个体(142例HCC患者和50例LC患者)的独立队列中对候选生物标志物进行验证。最终,我们验证了凝溶胶蛋白(GSN)浓度在HCC中显著低于LC(<0.0001),GSN浓度低的患者预后较差(<0.0001),且早期复发HCC的GSN浓度显著低于晚期复发HCC(<0.0001)。在甲胎蛋白(AFP)阴性的HCC患者中也观察到了这些趋势。基于机器学习的预测模型(GSN和微血管侵犯)预测早期复发风险的曲线下面积达到0.803(95%置信区间(CI):0.786-0.820),且在AFP阴性患者中保持相同的效能。总之,GSN是HCC早期复发的一种新型血清生物标志物。该模型可为复发高危的HCC患者提供及时预警。