The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
Department of Hepatopancreatobiliary Surgery, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, 350000, China.
Nat Commun. 2023 Dec 18;14(1):8392. doi: 10.1038/s41467-023-44255-2.
Early diagnosis of hepatocellular carcinoma (HCC) lacks highly sensitive and specific protein biomarkers. Here, we describe a staged mass spectrometry (MS)-based discovery-verification-validation proteomics workflow to explore serum proteomic biomarkers for HCC early diagnosis in 1002 individuals. Machine learning model determined as P4 panel (HABP2, CD163, AFP and PIVKA-II) clearly distinguish HCC from liver cirrhosis (LC, AUC 0.979, sensitivity 0.925, specificity 0.915) and healthy individuals (HC, AUC 0.992, sensitivity 0.975, specificity 1.000) in an independent validation cohort, outperforming existing clinical prediction strategies. Furthermore, the P4 panel can accurately predict LC to HCC conversion (AUC 0.890, sensitivity 0.909, specificity 0.877) with predicting HCC at a median of 11.4 months prior to imaging in prospective external validation cohorts (No.: Keshen 2018_005_02 and NCT03588442). These results suggest that proteomics-driven serum biomarker discovery provides a valuable reference for the liquid biopsy, and has great potential to improve early diagnosis of HCC.
肝细胞癌 (HCC) 的早期诊断缺乏高度敏感和特异的蛋白生物标志物。在这里,我们描述了一个基于质谱 (MS) 的分阶段发现-验证-验证蛋白质组学工作流程,以探索用于 HCC 早期诊断的血清蛋白质组生物标志物,共纳入 1002 个人。机器学习模型确定的 P4 面板(HABP2、CD163、AFP 和 PIVKA-II)可在独立验证队列中清晰地区分 HCC 与肝硬化 (LC,AUC 0.979,敏感性 0.925,特异性 0.915) 和健康个体 (HC,AUC 0.992,敏感性 0.975,特异性 1.000),优于现有的临床预测策略。此外,该 P4 面板还可以准确预测 LC 向 HCC 的转化 (AUC 0.890,敏感性 0.909,特异性 0.877),在前瞻性外部验证队列中,可在影像学检查前中位数 11.4 个月预测 HCC (编号:Keshen 2018_005_02 和 NCT03588442)。这些结果表明,蛋白质组学驱动的血清生物标志物发现为液体活检提供了有价值的参考,并具有改善 HCC 早期诊断的巨大潜力。