Suppr超能文献

计算基因组学数据去卷积的挑战与展望。

Challenges and perspectives in computational deconvolution of genomics data.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Methods. 2024 Mar;21(3):391-400. doi: 10.1038/s41592-023-02166-6. Epub 2024 Feb 19.

Abstract

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.

摘要

解析细胞类型异质性对于系统地理解组织内稳态及其在疾病中的失调至关重要。计算去卷积是一种从各种组学数据中估计细胞类型丰度的有效方法。尽管近年来计算去卷积在方法学上取得了重大进展,但仍存在挑战。在这里,我们列出了与计算去卷积相关的四个重要挑战:参考数据的质量、真实数据的生成、计算方法的局限性以及基准测试的设计和实现。最后,我们就参考数据生成、计算方法的新方向以及促进严格基准测试的策略提出了建议。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验