Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.
Genome Biol. 2023 May 17;24(1):120. doi: 10.1186/s13059-023-02951-8.
Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.
空间转录组学绘制了组织中的基因表达图谱,提出了确定不同细胞类型空间排列的挑战。然而,空间转录组学斑点包含多个细胞。因此,观察到的信号来自不同类型细胞的混合物。在这里,我们提出了一种创新的概率模型 Celloscope,它利用了已知的标记基因的先验知识,从空间转录组学数据中对细胞类型进行去卷积。Celloscope 在模拟数据上的表现优于其他方法,成功地指示了已知的大脑结构,并基于小鼠脑组织在空间上区分抑制性和兴奋性神经元类型,还剖析了前列腺组织中免疫浸润成分的巨大异质性。