Suppr超能文献

Celloscope:一种用于空间转录组学数据中基于标记基因驱动的细胞类型去卷积的概率模型。

Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data.

机构信息

Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.

出版信息

Genome Biol. 2023 May 17;24(1):120. doi: 10.1186/s13059-023-02951-8.

Abstract

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.

摘要

空间转录组学绘制了组织中的基因表达图谱,提出了确定不同细胞类型空间排列的挑战。然而,空间转录组学斑点包含多个细胞。因此,观察到的信号来自不同类型细胞的混合物。在这里,我们提出了一种创新的概率模型 Celloscope,它利用了已知的标记基因的先验知识,从空间转录组学数据中对细胞类型进行去卷积。Celloscope 在模拟数据上的表现优于其他方法,成功地指示了已知的大脑结构,并基于小鼠脑组织在空间上区分抑制性和兴奋性神经元类型,还剖析了前列腺组织中免疫浸润成分的巨大异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a8/10190053/1a9164b7e536/13059_2023_2951_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验