Suppr超能文献

Celloscope:一种用于空间转录组学数据中基于标记基因驱动的细胞类型去卷积的概率模型。

Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data.

机构信息

Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.

出版信息

Genome Biol. 2023 May 17;24(1):120. doi: 10.1186/s13059-023-02951-8.

Abstract

Spatial transcriptomics maps gene expression across tissues, posing the challenge of determining the spatial arrangement of different cell types. However, spatial transcriptomics spots contain multiple cells. Therefore, the observed signal comes from mixtures of cells of different types. Here, we propose an innovative probabilistic model, Celloscope, that utilizes established prior knowledge on marker genes for cell type deconvolution from spatial transcriptomics data. Celloscope outperforms other methods on simulated data, successfully indicates known brain structures and spatially distinguishes between inhibitory and excitatory neuron types based in mouse brain tissue, and dissects large heterogeneity of immune infiltrate composition in prostate gland tissue.

摘要

空间转录组学绘制了组织中的基因表达图谱,提出了确定不同细胞类型空间排列的挑战。然而,空间转录组学斑点包含多个细胞。因此,观察到的信号来自不同类型细胞的混合物。在这里,我们提出了一种创新的概率模型 Celloscope,它利用了已知的标记基因的先验知识,从空间转录组学数据中对细胞类型进行去卷积。Celloscope 在模拟数据上的表现优于其他方法,成功地指示了已知的大脑结构,并基于小鼠脑组织在空间上区分抑制性和兴奋性神经元类型,还剖析了前列腺组织中免疫浸润成分的巨大异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a8/10190053/1a9164b7e536/13059_2023_2951_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验