Suppr超能文献

傅里叶变换红外光谱法和机器学习在口腔细菌中牙龈卟啉单胞菌检测中的应用。

Fourier transform infrared spectroscopy and machine learning for Porphyromonas gingivalis detection in oral bacteria.

机构信息

Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Faculty of Arts and Sciences, Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan.

出版信息

Anal Sci. 2024 Apr;40(4):691-699. doi: 10.1007/s44211-023-00501-7. Epub 2024 Feb 20.

Abstract

Porphyromonas gingivalis, a Gram-negative anaerobic bacillus, is the primary pathogen in periodontitis. Herein, we cultivated strains of oral bacteria, including P. gingivalis and the oral commensal bacteria Actinomyces viscosus and Streptococcus mutans, and recorded the infrared absorption spectra of the gases released by the cultured bacteria at a resolution of 0.5 cm within the wavenumber range of 500-7500 cm. From these spectra, we identified the infrared wavenumbers associated with characteristic absorptions in the gases released by P. gingivalis using a decision tree-based machine learning algorithm. Finally, we compared the obtained absorbance spectra of ammonia (NH) and carbon monoxide (CO) using the HITRAN database. We observed peaks at similar positions in the P. gingivalis gases, NH, and CO spectra. Our results suggest that P. gingivalis releases higher amounts of NH and CO than A. viscosus and S. mutans. Thus, combining Fourier transform infrared spectroscopy with machine learning enabled us to extract the specific wavenumber range that differentiates P. gingivalis from a vast dataset of peak intensity ratios. Our method distinguishes the gases from P. gingivalis from those of other oral bacteria and provides an effective strategy for identifying P. gingivalis in oral bacteria. Our proposed methodology could be valuable in clinical settings as a simple, noninvasive pathogen diagnosis technique.

摘要

牙龈卟啉单胞菌是一种革兰氏阴性厌氧杆菌,是牙周炎的主要病原体。在此,我们培养了口腔细菌菌株,包括牙龈卟啉单胞菌和口腔共生菌黏性放线菌和变形链球菌,并记录了培养细菌在 500-7500 cm 波数范围内以 0.5 cm 分辨率释放的气体的红外吸收光谱。从这些光谱中,我们使用基于决策树的机器学习算法识别了与牙龈卟啉单胞菌释放的气体中特征吸收相关的红外波数。最后,我们使用 HITRAN 数据库比较了获得的氨 (NH) 和一氧化碳 (CO) 的吸收光谱。我们观察到在牙龈卟啉单胞菌气体、NH 和 CO 光谱中相似位置的峰。我们的结果表明,与黏性放线菌和变形链球菌相比,牙龈卟啉单胞菌释放的 NH 和 CO 量更高。因此,将傅里叶变换红外光谱与机器学习相结合,使我们能够提取出区分牙龈卟啉单胞菌与大量峰强度比数据集的特定波数范围。我们的方法将牙龈卟啉单胞菌的气体与其他口腔细菌的气体区分开来,并为在口腔细菌中识别牙龈卟啉单胞菌提供了有效的策略。我们提出的方法可能在临床环境中作为一种简单、非侵入性的病原体诊断技术具有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验