Suppr超能文献

一种新的概率模型:理论、模拟及其在体育和失效时间数据中的应用。

A new probabilistic model: Theory, simulation and applications to sports and failure times data.

作者信息

Tang Xiangming, Seong Jin-Taek, Alharbi Randa, Mutairi Aned Al, Nasr Said G

机构信息

Jiangxi Modern Vocational and Technical College, Nanchang 330000, Jiangxi, China.

Graduate School of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea.

出版信息

Heliyon. 2024 Feb 6;10(4):e25651. doi: 10.1016/j.heliyon.2024.e25651. eCollection 2024 Feb 29.

Abstract

In applied sectors, data modeling/analysis is very important for decision-making and future predictions. Data analysis in applied sectors mainly relies on probability distributions. Data arising from numerous sectors such as engineering-related fields have complex structures. For such kinds of data having complex structures, the implementation of classical distributions is not a suitable choice. Therefore, researchers often need to look for more flexible models that might have the capability of capturing a high degree of kurtosis and increasing the fitting power of the classical models. Taking motivation from the above theory, to achieve these goals, we study a new probabilistic model, which we named a new beta power flexible Weibull (NBPF-Weibull) distribution. We derive some of the main distributional properties of the NBPF-Weibull model. The estimators for the parameters of the NBPF-Weibull distribution are derived. The performances of these estimators are judged by incorporating a simulation study for different selected values of the parameters. Three data sets are used to demonstrate the applicability of the NBPF-Weibull model. The first data set is observed from sports. It represents the re-injury rate of various football players. While the other two data sets are observed from the reliability zone. By adopting certain diagnostic criteria, it is proven that the NBPF-Weibull model repeatedly surpasses well-known classical and modified models.

摘要

在应用领域,数据建模/分析对于决策和未来预测非常重要。应用领域的数据分析主要依赖概率分布。来自众多领域(如工程相关领域)的数据具有复杂的结构。对于这类具有复杂结构的数据,采用经典分布并非合适的选择。因此,研究人员常常需要寻找更灵活的模型,这些模型可能具备捕捉高度峰度的能力,并提高经典模型的拟合能力。基于上述理论,为实现这些目标,我们研究了一种新的概率模型,我们将其命名为新型贝塔幂灵活威布尔(NBPF - 威布尔)分布。我们推导了NBPF - 威布尔模型的一些主要分布特性。推导了NBPF - 威布尔分布参数的估计量。通过针对不同选定参数值进行模拟研究来评判这些估计量的性能。使用三个数据集来证明NBPF - 威布尔模型的适用性。第一个数据集来自体育领域,它代表了各类足球运动员的再次受伤率。而另外两个数据集来自可靠性领域。通过采用某些诊断标准,证明NBPF - 威布尔模型多次超越了著名的经典模型和改进模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a9c/10875369/1c158c298c92/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验