Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland.
Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland.
New Phytol. 2024 May;242(3):858-869. doi: 10.1111/nph.19611. Epub 2024 Feb 20.
A conceptual understanding on how the vegetation's carbon (C) balance is determined by source activity and sink demand is important to predict its C uptake and sequestration potential now and in the future. We have gathered trajectories of photosynthesis and growth as a function of environmental conditions described in the literature and compared them with current concepts of source and sink control. There is no clear evidence for pure source or sink control of the C balance, which contradicts recent hypotheses. Using model scenarios, we show how legacy effects via structural and functional traits and antecedent environmental conditions can alter the plant's carbon balance. We, thus, combined the concept of short-term source-sink coordination with long-term environmentally driven legacy effects that dynamically acclimate structural and functional traits over time. These acclimated traits feedback on the sensitivity of source and sink activity and thus change the plant physiological responses to environmental conditions. We postulate a whole plant C-coordination system that is primarily driven by stomatal optimization of growth to avoid a C source-sink mismatch. Therefore, we anticipate that C sequestration of forest ecosystems under future climate conditions will largely follow optimality principles that balance water and carbon resources to maximize growth in the long term.
对植被碳(C)平衡如何受到源活动和汇需求的决定因素有一个概念上的理解,对于预测其现在和未来的 C 吸收和固存潜力非常重要。我们已经收集了文献中描述的光合作用和生长轨迹,并将其与当前的源和汇控制概念进行了比较。没有明确的证据表明 C 平衡受到纯源或汇的控制,这与最近的假设相矛盾。使用模型情景,我们展示了通过结构和功能特征以及先前的环境条件的遗留效应如何改变植物的碳平衡。因此,我们将短期源汇协调的概念与长期受环境驱动的遗留效应结合起来,这些效应随着时间的推移动态地适应结构和功能特征。这些适应的特征反馈到源和汇活动的敏感性上,从而改变植物对环境条件的生理响应。我们提出了一个完整的植物 C 协调系统,该系统主要由生长的气孔优化来驱动,以避免 C 源汇不匹配。因此,我们预计,在未来气候条件下,森林生态系统的 C 固存将在很大程度上遵循优化原则,平衡水和碳资源,以实现长期的最大生长。