Zhang Zhiwei, Filez Matthias, Solano Eduardo, Poonkottil Nithin, Li Jin, Minjauw Matthias M, Poelman Hilde, Rosenthal Martin, Brüner Philipp, Galvita Vladimir V, Detavernier Christophe, Dendooven Jolien
Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
Centre for Membrane Separations Adsorption Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
Nanoscale. 2024 Mar 7;16(10):5362-5373. doi: 10.1039/d3nr05884k.
Metal nanoparticle (NP) sintering is a major cause of catalyst deactivation, as NP growth reduces the surface area available for reaction. A promising route to halt sintering is to deposit a protective overcoat on the catalyst surface, followed by annealing to generate overlayer porosity for gas transport to the NPs. Yet, such a combined deposition-annealing approach lacks structural control over the cracked protection layer and the number of NP surface atoms available for reaction. Herein, we exploit the tailoring capabilities of atomic layer deposition (ALD) to deposit MgO overcoats on archetypal Pt NP catalysts with thicknesses ranging from sub-monolayers to nm-range thin films. Two different ALD processes are studied for the growth of MgO overcoats on Pt NPs anchored on a SiO support, using Mg(EtCp) and HO, and Mg(TMHD) and O, respectively. Spectroscopic ellipsometry and X-ray photoelectron spectroscopy measurements reveal significant growth on both SiO and Pt for the former process, while the latter exhibits a drastically lower growth per cycle with an initial chemical selectivity towards Pt. These differences in MgO growth characteristics have implications for the availability of uncoated Pt surface atoms at different stages of the ALD process, as probed by low energy ion scattering, and for the sintering behavior during O annealing, as monitored with grazing incidence small angle X-ray scattering ( GISAXS). The Mg(TMHD)-O ALD process enables exquisite coverage control allowing a balance between physically blocking the Pt surface to prevent sintering and keeping Pt surface atoms free for reaction. This approach avoids the need for post-annealing, hence also safeguarding the structural integrity of the as-deposited overcoat.
金属纳米颗粒(NP)烧结是催化剂失活的主要原因,因为NP的生长会减少可用于反应的表面积。一种有前景的阻止烧结的方法是在催化剂表面沉积一层保护涂层,然后进行退火以产生覆盖层孔隙,以便气体传输到NP。然而,这种沉积 - 退火组合方法对破裂的保护层以及可用于反应的NP表面原子数量缺乏结构控制。在此,我们利用原子层沉积(ALD)的定制能力,在典型的Pt NP催化剂上沉积MgO覆盖层,其厚度范围从亚单层到纳米级薄膜。研究了两种不同的ALD工艺,分别使用Mg(EtCp)和HO以及Mg(TMHD)和O,在锚定在SiO载体上的Pt NPs上生长MgO覆盖层。椭圆偏振光谱和X射线光电子能谱测量表明,前一种工艺在SiO和Pt上都有显著生长,而后一种工艺每循环的生长速率极低,且对Pt具有初始化学选择性。MgO生长特性的这些差异对ALD过程不同阶段未涂层Pt表面原子的可用性(通过低能离子散射探测)以及O退火期间的烧结行为(用掠入射小角X射线散射(GISAXS)监测)都有影响。Mg(TMHD)-O ALD工艺能够实现精确的覆盖控制,在物理上阻挡Pt表面以防止烧结和保持Pt表面原子可用于反应之间实现平衡。这种方法避免了后退火的需要,因此也保护了沉积后覆盖层的结构完整性。