Lu Jicun, Lv Xiaochun, Zhang Chenghao, Zhang Chuting, Liu Yang
Guanghua Lingang Engineering Application Technology Research and Development (Shanghai) Co., Ltd., Shanghai 201306, China.
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China.
Micromachines (Basel). 2024 Nov 28;15(12):1436. doi: 10.3390/mi15121436.
Integrating nanocrystalline diamond (NCD) films on silicon chips has great practical significance and many potential applications, including high-power electronic devices, microelectromechanical systems, optoelectronic devices, and biosensors. In this study, we provide a solution for ensuring heterogeneous interface integration between silicon (Si) chips and NCD films using low-temperature bonding technology. This paper details the design and implementation of a magnetron sputtering layer on an NCD surface, as well as the materials and process for the connection layer of the integrated interface. The obtained NCD/Ti/Cu composite layer shows uniform island-like Cu nanostructures with 100~200 nm diameters, which could promote bonding between NCD and Si chips. Ultimately, a heterogeneous interface preparation of Si/Ag/Cu/Ti/NCD was achieved, with the integration temperature not exceeding 250 °C. The TEM analysis shows the closely packed atomic interface of the Cu NPs and deposited Ti/Cu layers, revealing the bonding mechanism.
在硅芯片上集成纳米晶金刚石(NCD)薄膜具有重大的实际意义和众多潜在应用,包括高功率电子器件、微机电系统、光电器件和生物传感器。在本研究中,我们提供了一种利用低温键合技术确保硅(Si)芯片与NCD薄膜之间异质界面集成的解决方案。本文详细介绍了NCD表面磁控溅射层的设计与实现,以及集成界面连接层的材料和工艺。所获得的NCD/Ti/Cu复合层呈现出直径为100~200 nm的均匀岛状Cu纳米结构,这可以促进NCD与Si芯片之间的键合。最终,实现了Si/Ag/Cu/Ti/NCD的异质界面制备,集成温度不超过250°C。透射电子显微镜(TEM)分析显示了Cu纳米颗粒与沉积的Ti/Cu层紧密堆积的原子界面,揭示了键合机制。