Suppr超能文献

多模态神经影像学与神经生理学整合的癫痫患者手术计划优化:病例研究。

Optimizing Surgical Planning for Epilepsy Patients With Multimodal Neuroimaging and Neurophysiology Integration: A Case Study.

机构信息

Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, U.S.A.

Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, U.S.A.

出版信息

J Clin Neurophysiol. 2024 May 1;41(4):317-321. doi: 10.1097/WNP.0000000000001071. Epub 2024 Feb 20.

Abstract

Current preoperative evaluation of epilepsy can be challenging because of the lack of a comprehensive view of the network's dysfunctions. To demonstrate the utility of our multimodal neurophysiology and neuroimaging integration approach in the presurgical evaluation, we present a proof-of-concept for using this approach in a patient with nonlesional frontal lobe epilepsy who underwent two resective surgeries to achieve seizure control. We conducted a post-hoc investigation using four neuroimaging and neurophysiology modalities: diffusion tensor imaging, resting-state functional MRI, and stereoelectroencephalography at rest and during seizures. We computed region-of-interest-based connectivity for each modality and applied betweenness centrality to identify key network hubs across modalities. Our results revealed that despite seizure semiology and stereoelectroencephalography indicating dysfunction in the right orbitofrontal region, the maximum overlap on the hubs across modalities extended to right temporal areas. Notably, the right middle temporal lobe region served as an overlap hub across diffusion tensor imaging, resting-state functional MRI, and rest stereoelectroencephalography networks and was only included in the resected area in the second surgery, which led to long-term seizure control of this patient. Our findings demonstrated that transmodal hubs could help identify key areas related to epileptogenic network. Therefore, this case presents a promising perspective of using a multimodal approach to improve the presurgical evaluation of patients with epilepsy.

摘要

由于缺乏对网络功能障碍的全面了解,目前对癫痫的术前评估具有一定挑战性。为了展示我们的多模态神经生理学和神经影像学整合方法在术前评估中的效用,我们提供了一个概念验证,使用该方法对一名非病变性额叶癫痫患者进行了两次切除术以实现癫痫控制。我们使用了四种神经影像学和神经生理学模式进行了事后调查:弥散张量成像、静息状态功能 MRI 和静息和发作期间的立体脑电图。我们为每种模式计算了基于感兴趣区域的连通性,并应用了介数中心性来识别跨模式的关键网络枢纽。我们的结果表明,尽管癫痫发作的症状学和立体脑电图表明右侧眶额区域功能障碍,但跨模式枢纽的最大重叠延伸至右侧颞区。值得注意的是,右侧颞中回区域是弥散张量成像、静息状态功能 MRI 和静息立体脑电图网络的重叠枢纽,仅在第二次手术中被切除,这导致了该患者的长期癫痫控制。我们的研究结果表明,跨模态枢纽可以帮助确定与致痫网络相关的关键区域。因此,该病例提出了使用多模态方法来改善癫痫患者术前评估的有前景的观点。

相似文献

1
Optimizing Surgical Planning for Epilepsy Patients With Multimodal Neuroimaging and Neurophysiology Integration: A Case Study.
J Clin Neurophysiol. 2024 May 1;41(4):317-321. doi: 10.1097/WNP.0000000000001071. Epub 2024 Feb 20.
2
Surgery for epilepsy.
Cochrane Database Syst Rev. 2015 Jul 1(7):CD010541. doi: 10.1002/14651858.CD010541.pub2.
5
Network coupling and surgical treatment response in temporal lobe epilepsy: A proof-of-concept study.
Epilepsy Behav. 2023 Dec;149:109503. doi: 10.1016/j.yebeh.2023.109503. Epub 2023 Nov 4.
6
Imaging-genomic spatial-modality attentive fusion for studying neuropsychiatric disorders.
Hum Brain Mapp. 2024 Dec 1;45(17):e26799. doi: 10.1002/hbm.26799.
9
Pre-surgical features of intrinsic brain networks predict single and joint epilepsy surgery outcomes.
Neuroimage Clin. 2023;38:103387. doi: 10.1016/j.nicl.2023.103387. Epub 2023 Mar 29.

引用本文的文献

2
Can brain network analyses guide epilepsy surgery?
Curr Opin Neurol. 2025 Apr 1;38(2):105-110. doi: 10.1097/WCO.0000000000001346. Epub 2025 Jan 31.
3
Therapeutic approaches targeting seizure networks.
Front Netw Physiol. 2024 Aug 7;4:1441983. doi: 10.3389/fnetp.2024.1441983. eCollection 2024.

本文引用的文献

1
Epilepsy and brain network hubs.
Epilepsia. 2022 Mar;63(3):537-550. doi: 10.1111/epi.17171. Epub 2022 Jan 28.
3
Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy.
Neuroimage. 2020 Jun;213:116706. doi: 10.1016/j.neuroimage.2020.116706. Epub 2020 Mar 6.
4
Characterizing the role of the structural connectome in seizure dynamics.
Brain. 2019 Jul 1;142(7):1955-1972. doi: 10.1093/brain/awz125.
5
Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities.
Neurology. 2019 Apr 23;92(17):e1957-e1968. doi: 10.1212/WNL.0000000000007370. Epub 2019 Mar 27.
6
Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery.
Epilepsia. 2018 Sep;59(9):1643-1654. doi: 10.1111/epi.14528. Epub 2018 Aug 10.
7
Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy.
Epilepsia. 2015 Nov;56(11):1660-8. doi: 10.1111/epi.13133. Epub 2015 Sep 22.
8
AICHA: An atlas of intrinsic connectivity of homotopic areas.
J Neurosci Methods. 2015 Oct 30;254:46-59. doi: 10.1016/j.jneumeth.2015.07.013. Epub 2015 Jul 23.
9
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.
Epilepsy Res. 2014 Dec;108(10):1770-81. doi: 10.1016/j.eplepsyres.2014.09.023. Epub 2014 Sep 28.
10
Functional and structural brain networks in epilepsy: what have we learned?
Epilepsia. 2013 Nov;54(11):1855-65. doi: 10.1111/epi.12350. Epub 2013 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验