Suppr超能文献

机器学习与医学影像中的偏倚:机遇与挑战。

Machine Learning and Bias in Medical Imaging: Opportunities and Challenges.

机构信息

Icahn School of Medicine at Mount Sinai, New York (A.V.).

Department of Cardiology, Smidt Heart Institute (A.V., A.C.K., D.O., S.C.), Cedars-Sinai Medical Center.

出版信息

Circ Cardiovasc Imaging. 2024 Feb;17(2):e015495. doi: 10.1161/CIRCIMAGING.123.015495. Epub 2024 Feb 20.

Abstract

Bias in health care has been well documented and results in disparate and worsened outcomes for at-risk groups. Medical imaging plays a critical role in facilitating patient diagnoses but involves multiple sources of bias including factors related to access to imaging modalities, acquisition of images, and assessment (ie, interpretation) of imaging data. Machine learning (ML) applied to diagnostic imaging has demonstrated the potential to improve the quality of imaging-based diagnosis and the precision of measuring imaging-based traits. Algorithms can leverage subtle information not visible to the human eye to detect underdiagnosed conditions or derive new disease phenotypes by linking imaging features with clinical outcomes, all while mitigating cognitive bias in interpretation. Importantly, however, the application of ML to diagnostic imaging has the potential to either reduce or propagate bias. Understanding the potential gain as well as the potential risks requires an understanding of how and what ML models learn. Common risks of propagating bias can arise from unbalanced training, suboptimal architecture design or selection, and uneven application of models. Notwithstanding these risks, ML may yet be applied to improve gain from imaging across all 3A's (access, acquisition, and assessment) for all patients. In this review, we present a framework for understanding the balance of opportunities and challenges for minimizing bias in medical imaging, how ML may improve current approaches to imaging, and what specific design considerations should be made as part of efforts to maximize the quality of health care for all.

摘要

医疗保健中的偏见已得到充分证实,这导致高风险群体的结果存在差异且恶化。医学成像在促进患者诊断方面发挥着关键作用,但涉及多种来源的偏见,包括与获得成像方式、获取图像以及评估(即解释)成像数据相关的因素。应用于诊断成像的机器学习(ML)已证明具有改善基于成像的诊断质量和测量基于成像的特征的精确性的潜力。算法可以利用人眼无法察觉的细微信息来检测未被诊断出的病症,或者通过将成像特征与临床结果联系起来得出新的疾病表型,同时减轻解释中的认知偏见。然而,重要的是,ML 在诊断成像中的应用有可能减少或传播偏见。要了解潜在的收益和潜在风险,需要了解 ML 模型如何学习以及学习什么。传播偏见的常见风险可能源于不平衡的训练、次优的架构设计或选择,以及模型的不均衡应用。尽管存在这些风险,但 ML 仍可应用于改善所有患者在 3A(获取、获取和评估)方面的成像增益。在这篇综述中,我们提出了一个框架,用于了解在医学成像中最小化偏见的机会和挑战的平衡,以及 ML 如何改善当前的成像方法,以及作为努力的一部分应考虑哪些具体的设计考虑因素,以最大限度地提高所有人的医疗保健质量。

相似文献

1
Machine Learning and Bias in Medical Imaging: Opportunities and Challenges.
Circ Cardiovasc Imaging. 2024 Feb;17(2):e015495. doi: 10.1161/CIRCIMAGING.123.015495. Epub 2024 Feb 20.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
5
Laboratory Data as a Potential Source of Bias in Healthcare Artificial Intelligence and Machine Learning Models.
Ann Lab Med. 2025 Jan 1;45(1):12-21. doi: 10.3343/alm.2024.0323. Epub 2024 Oct 24.
6
Understanding and Mitigating Bias in Imaging Artificial Intelligence.
Radiographics. 2024 May;44(5):e230067. doi: 10.1148/rg.230067.
8
Artificial intelligence and machine learning for anaphylaxis algorithms.
Curr Opin Allergy Clin Immunol. 2024 Oct 1;24(5):305-312. doi: 10.1097/ACI.0000000000001015. Epub 2024 Jul 24.
9
The Potential For Bias In Machine Learning And Opportunities For Health Insurers To Address It.
Health Aff (Millwood). 2022 Feb;41(2):212-218. doi: 10.1377/hlthaff.2021.01287.
10
Empowering nurses to champion Health equity & BE FAIR: Bias elimination for fair and responsible AI in healthcare.
J Nurs Scholarsh. 2025 Jan;57(1):130-139. doi: 10.1111/jnu.13007. Epub 2024 Jul 29.

引用本文的文献

1
A review of machine learning applications in heart health.
Biomed Eng Online. 2025 Aug 11;24(1):99. doi: 10.1186/s12938-025-01430-4.
2
Artificial intelligence-enhanced echocardiography in cardiovascular disease management.
Nat Rev Cardiol. 2025 Aug 5. doi: 10.1038/s41569-025-01197-0.
3
Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.
Curr Atheroscler Rep. 2025 Jul 7;27(1):70. doi: 10.1007/s11883-025-01316-9.
4
5
Artificial intelligence in endoscopy and colonoscopy: a comprehensive bibliometric analysis of global research trends.
Front Med (Lausanne). 2025 May 30;12:1532640. doi: 10.3389/fmed.2025.1532640. eCollection 2025.
6
Uncovering ethical biases in publicly available fetal ultrasound datasets.
NPJ Digit Med. 2025 Jun 13;8(1):355. doi: 10.1038/s41746-025-01739-3.
7
Evolution of an Artificial Intelligence-Powered Application for Mammography.
Diagnostics (Basel). 2025 Mar 24;15(7):822. doi: 10.3390/diagnostics15070822.
8
Research progress of artificial intelligence and machine learning in pulmonary embolism.
Front Med (Lausanne). 2025 Mar 27;12:1577559. doi: 10.3389/fmed.2025.1577559. eCollection 2025.
10

本文引用的文献

1
Deep Learning-Derived Myocardial Strain.
JACC Cardiovasc Imaging. 2024 Jul;17(7):715-725. doi: 10.1016/j.jcmg.2024.01.011. Epub 2024 Mar 27.
2
Association of Coronary Artery Calcium Detected by Routine Ungated CT Imaging With Cardiovascular Outcomes.
J Am Coll Cardiol. 2023 Sep 19;82(12):1192-1202. doi: 10.1016/j.jacc.2023.06.040.
3
AI pitfalls and what not to do: mitigating bias in AI.
Br J Radiol. 2023 Oct;96(1150):20230023. doi: 10.1259/bjr.20230023. Epub 2023 Sep 12.
5
Severe aortic stenosis detection by deep learning applied to echocardiography.
Eur Heart J. 2023 Nov 14;44(43):4592-4604. doi: 10.1093/eurheartj/ehad456.
6
A robust radiomic-based machine learning approach to detect cardiac amyloidosis using cardiac computed tomography.
Front Radiol. 2023 Jun 16;3:1193046. doi: 10.3389/fradi.2023.1193046. eCollection 2023.
7
CathAI: fully automated coronary angiography interpretation and stenosis estimation.
NPJ Digit Med. 2023 Aug 11;6(1):142. doi: 10.1038/s41746-023-00880-1.
9
Implications of predicting race variables from medical images.
Science. 2023 Jul 14;381(6654):149-150. doi: 10.1126/science.adh4260. Epub 2023 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验