Suppr超能文献

利用X射线和CT图像进行SARS-CoV-2检测的深度学习技术面临的挑战、问题及未来建议:全面综述

Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review.

作者信息

Islam Md Shofiqul, Al Farid Fahmid, Shamrat F M Javed Mehedi, Islam Md Nahidul, Rashid Mamunur, Bari Bifta Sama, Abdullah Junaidi, Nazrul Islam Muhammad, Akhtaruzzaman Md, Nomani Kabir Muhammad, Mansor Sarina, Abdul Karim Hezerul

机构信息

Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh.

Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Warun Ponds, Victoria, Australia.

出版信息

PeerJ Comput Sci. 2024 Dec 24;10:e2517. doi: 10.7717/peerj-cs.2517. eCollection 2024.

Abstract

The global spread of SARS-CoV-2 has prompted a crucial need for accurate medical diagnosis, particularly in the respiratory system. Current diagnostic methods heavily rely on imaging techniques like CT scans and X-rays, but identifying SARS-CoV-2 in these images proves to be challenging and time-consuming. In this context, artificial intelligence (AI) models, specifically deep learning (DL) networks, emerge as a promising solution in medical image analysis. This article provides a meticulous and comprehensive review of imaging-based SARS-CoV-2 diagnosis using deep learning techniques up to May 2024. This article starts with an overview of imaging-based SARS-CoV-2 diagnosis, covering the basic steps of deep learning-based SARS-CoV-2 diagnosis, SARS-CoV-2 data sources, data pre-processing methods, the taxonomy of deep learning techniques, findings, research gaps and performance evaluation. We also focus on addressing current privacy issues, limitations, and challenges in the realm of SARS-CoV-2 diagnosis. According to the taxonomy, each deep learning model is discussed, encompassing its core functionality and a critical assessment of its suitability for imaging-based SARS-CoV-2 detection. A comparative analysis is included by summarizing all relevant studies to provide an overall visualization. Considering the challenges of identifying the best deep-learning model for imaging-based SARS-CoV-2 detection, the article conducts an experiment with twelve contemporary deep-learning techniques. The experimental result shows that the MobileNetV3 model outperforms other deep learning models with an accuracy of 98.11%. Finally, the article elaborates on the current challenges in deep learning-based SARS-CoV-2 diagnosis and explores potential future directions and methodological recommendations for research and advancement.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的全球传播引发了对准确医学诊断的迫切需求,尤其是在呼吸系统方面。当前的诊断方法严重依赖于CT扫描和X光等成像技术,但在这些图像中识别SARS-CoV-2具有挑战性且耗时。在这种背景下,人工智能(AI)模型,特别是深度学习(DL)网络,在医学图像分析中成为一种有前景的解决方案。本文对截至2024年5月使用深度学习技术进行基于成像的SARS-CoV-2诊断进行了细致全面的综述。本文首先概述了基于成像的SARS-CoV-2诊断,涵盖基于深度学习的SARS-CoV-2诊断的基本步骤、SARS-CoV-2数据源、数据预处理方法、深度学习技术分类、研究结果、研究差距和性能评估。我们还着重探讨了SARS-CoV-2诊断领域当前的隐私问题、局限性和挑战。根据分类法,对每个深度学习模型进行了讨论,包括其核心功能以及对其适用于基于成像的SARS-CoV-2检测的批判性评估。通过总结所有相关研究进行了比较分析,以提供整体可视化。考虑到为基于成像的SARS-CoV-2检测确定最佳深度学习模型的挑战,本文使用十二种当代深度学习技术进行了实验。实验结果表明,MobileNetV3模型以98.11%的准确率优于其他深度学习模型。最后,本文阐述了基于深度学习的SARS-CoV-2诊断当前面临的挑战,并探索了未来潜在的研究方向以及研究和进步的方法建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验