Zheng Ziyou, Zhang Shuzhen, Song Hailong, Yan Qi
College of Communication and Electronic Engineering, Jishou University, People's South Road, Jishou, 416000, Hunan, China.
Key Laboratory of Visual Perception and Artificial Intelligence, Hunan University, Lushan Road, Changsha, 410000, Hunan, China.
Sci Rep. 2024 Feb 20;14(1):4209. doi: 10.1038/s41598-024-54547-2.
Deep clustering has been widely applicated in various fields, including natural image and language processing. However, when it is applied to hyperspectral image (HSI) processing, it encounters challenges due to high dimensionality of HSI and complex spatial-spectral characteristics. This study introduces a kind of deep clustering model specifically tailed for HSI analysis. To address the high dimensionality issue, redundant dimension of HSI is firstly eliminated by combining principal component analysis (PCA) with t-distributed stochastic neighbor embedding (t-SNE). The reduced dataset is then input into a three-dimensional attention convolutional autoencoder (3D-ACAE) to extract essential spatial-spectral features. The 3D-ACAE uses spatial-spectral attention mechanism to enhance captured features. Finally, these enhanced features pass through an embedding layer to create a compact data-representation, and the compact data-representation is divided into distinct clusters by clustering layer. Experimental results on three publicly available datasets validate the superiority of the proposed model for HSI analysis.
深度聚类已广泛应用于包括自然图像和语言处理在内的各个领域。然而,当将其应用于高光谱图像(HSI)处理时,由于HSI的高维度和复杂的空间光谱特征,它会遇到挑战。本研究介绍了一种专门为HSI分析量身定制的深度聚类模型。为了解决高维度问题,首先通过将主成分分析(PCA)与t分布随机邻域嵌入(t-SNE)相结合来消除HSI的冗余维度。然后将降维后的数据集输入到三维注意力卷积自动编码器(3D-ACAE)中,以提取基本的空间光谱特征。3D-ACAE使用空间光谱注意力机制来增强捕获的特征。最后,这些增强后的特征通过一个嵌入层来创建紧凑的数据表示,并且紧凑的数据表示由聚类层划分为不同的簇。在三个公开可用数据集上的实验结果验证了所提出模型在HSI分析方面的优越性。