Suppr超能文献

基于自动编码器的高光谱图像超分辨率扩张投影校正网络。

Dilated projection correction network based on autoencoder for hyperspectral image super-resolution.

机构信息

Electronic Information School, Wuhan University, Wuhan, 430072, China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Neural Netw. 2022 Feb;146:107-119. doi: 10.1016/j.neunet.2021.11.014. Epub 2021 Nov 17.

Abstract

This paper focuses on improving the spatial resolution of the hyperspectral image (HSI) by taking the prior information into consideration. In recent years, single HSI super-resolution methods based on deep learning have achieved good performance. However, most of them only simply apply general image super-resolution deep networks to hyperspectral data, thus ignoring some specific characteristics of hyperspectral data itself. In order to make full use of spectral information of the HSI, we transform the HSI SR problem from the image domain into the abundance domain by the dilated projection correction network with an autoencoder, termed as aeDPCN. In particular, we first encode the low-resolution HSI to abundance representation and preserve the spectral information in the decoder network, which could largely reduce the computational complexity. Then, to enhance the spatial resolution of the abundance embedding, we super-resolve the embedding in a coarse-to-fine manner by the dilated projection correction network where the back-projection strategy is introduced to further eliminate spectral distortion. Finally, the predictive images are derived by the same decoder, which increases the stability of our method, even at a large upscaling factor. Extensive experiments on real hyperspectral image scenes demonstrate the superiority of our method over the state-of-the-art, in terms of accuracy and efficiency.

摘要

本文关注于通过考虑先验信息来提高高光谱图像(HSI)的空间分辨率。近年来,基于深度学习的单张 HSI 超分辨率方法已经取得了很好的效果。然而,大多数方法只是简单地将通用的图像超分辨率深度网络应用于高光谱数据,从而忽略了高光谱数据本身的一些特定特征。为了充分利用 HSI 的光谱信息,我们通过带有自动编码器的扩张投影校正网络将 HSI SR 问题从图像域转换到丰度域,称为 aeDPCN。具体来说,我们首先将低分辨率 HSI 编码为丰度表示,并在解码器网络中保留光谱信息,这可以大大降低计算复杂度。然后,为了增强丰度嵌入的空间分辨率,我们通过扩张投影校正网络以粗到精的方式对嵌入进行超分辨率处理,其中引入了反向投影策略以进一步消除光谱失真。最后,通过相同的解码器得出预测图像,这增加了我们方法的稳定性,即使在较大的放大因子下也是如此。在真实高光谱图像场景上的广泛实验表明,我们的方法在准确性和效率方面都优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验