Suppr超能文献

通过机器学习推进高光谱成像中的激光烧蚀评估。

Advancing laser ablation assessment in hyperspectral imaging through machine learning.

机构信息

Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.

Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.

出版信息

Comput Biol Med. 2024 Sep;179:108849. doi: 10.1016/j.compbiomed.2024.108849. Epub 2024 Jul 17.

Abstract

Hyperspectral imaging (HSI) is gaining increasing relevance in medicine, with an innovative application being the intraoperative assessment of the outcome of laser ablation treatment used for minimally invasive tumor removal. However, the high dimensionality and complexity of HSI data create a need for end-to-end image processing workflows specifically tailored to handle these data. This study addresses this challenge by proposing a multi-stage workflow for the analysis of hyperspectral data and allows investigating the performance of different components and modalities for ablation detection and segmentation. To address dimensionality reduction, we integrated principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) to capture dominant variations and reveal intricate structures, respectively. Additionally, we employed the Faster Region-based Convolutional Neural Network (Faster R-CNN) to accurately localize ablation areas. The two-stage detection process of Faster R-CNN, along with the choice of dimensionality reduction technique and data modality, significantly influenced the performance in detecting ablation areas. The evaluation of the ablation detection on an independent test set demonstrated a mean average precision of approximately 0.74, which validates the generalization ability of the models. In the segmentation component, the Mean Shift algorithm showed high quality segmentation without manual cluster definition. Our results prove that the integration of PCA, t-SNE, and Faster R-CNN enables improved interpretation of hyperspectral data, leading to the development of reliable ablation detection and segmentation systems.

摘要

高光谱成像(HSI)在医学领域的应用越来越受到关注,其创新应用之一是术中评估激光消融治疗的结果,这种治疗方法用于微创肿瘤切除。然而,HSI 数据的高维性和复杂性要求专门的端到端图像处理工作流程来处理这些数据。本研究通过提出一种用于分析高光谱数据的多阶段工作流程来应对这一挑战,并允许研究不同组件和模式在消融检测和分割方面的性能。为了解决降维问题,我们集成了主成分分析(PCA)和 t 分布随机邻域嵌入(t-SNE),分别用于捕获主要变化和揭示复杂结构。此外,我们还采用了快速区域卷积神经网络(Faster R-CNN)来准确地定位消融区域。Faster R-CNN 的两阶段检测过程,以及降维技术和数据模式的选择,对检测消融区域的性能有显著影响。在独立测试集上对消融检测的评估表明,平均精度约为 0.74,验证了模型的泛化能力。在分割组件中,均值漂移算法无需手动定义聚类即可实现高质量的分割。我们的结果证明,PCA、t-SNE 和 Faster R-CNN 的集成能够改善高光谱数据的解释,从而开发出可靠的消融检测和分割系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验