Department of Radiology, Jena University Hospital - Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
Sci Rep. 2024 Feb 20;14(1):4195. doi: 10.1038/s41598-024-54877-1.
Computer Vision (CV)-based human identification using orthopantomograms (OPGs) has the potential to identify unknown deceased individuals by comparing postmortem OPGs with a comprehensive antemortem CV database. However, the growing size of the CV database leads to longer processing times. This study aims to develop a standardized and reliable Convolutional Neural Network (CNN) for age estimation using OPGs and integrate it into the CV-based human identification process. The CNN was trained on 50,000 OPGs, each labeled with ages ranging from 2 to 89 years. Testing included three postmortem OPGs, 10,779 antemortem OPGs, and an additional set of 70 OPGs within the context of CV-based human identification. Integrating the CNN for age estimation into CV-based human identification process resulted in a substantial reduction of up to 96% in processing time for a CV database containing 105,251 entries. Age estimation accuracy varied between postmortem and antemortem OPGs, with a mean absolute error (MAE) of 2.76 ± 2.67 years and 3.26 ± 3.06 years across all ages, as well as 3.69 ± 3.14 years for an additional 70 OPGs. In conclusion, the incorporation of a CNN for age estimation in the CV-based human identification process significantly reduces processing time while delivering reliable results.
基于计算机视觉(CV)的人类身份识别技术可以通过将死后的全景 X 光片(OPG)与全面的生前 CV 数据库进行比较来识别未知的死者。然而,CV 数据库的不断增大导致处理时间更长。本研究旨在开发一种标准化和可靠的卷积神经网络(CNN),用于基于 OPG 的年龄估计,并将其集成到基于 CV 的人类身份识别过程中。该 CNN 接受了 50,000 张 OPG 的训练,每张 OPG 都标注了 2 至 89 岁的年龄。测试包括三张死后 OPG、10,779 张生前 OPG 和一组额外的 70 张 OPG,这些 OPG 都是在基于 CV 的人类身份识别的背景下进行测试的。将年龄估计的 CNN 集成到基于 CV 的人类身份识别过程中,可将包含 105,251 条记录的 CV 数据库的处理时间减少高达 96%。死后和生前 OPG 的年龄估计准确性不同,平均绝对误差(MAE)分别为 2.76±2.67 岁和 3.26±3.06 岁,所有年龄段的平均绝对误差为 3.69±3.14 岁。综上所述,将年龄估计的 CNN 纳入基于 CV 的人类身份识别过程可显著减少处理时间,同时提供可靠的结果。