Heinrich Andreas, Hubig Michael, Mall Gita, Teichgräber Ulf
Department of Radiology, Jena University Hospital-Friedrich Schiller University, Jena, Germany.
Institute of Forensic Medicine, Jena University Hospital-Friedrich Schiller University, Jena, Germany.
Eur Radiol. 2025 Apr 27. doi: 10.1007/s00330-025-11630-0.
Computer vision (CV) mimics human vision, enabling the automatic comparison of radiological images from recent examinations with a vast image database for unique identification. This method offers significant potential in emergencies involving unknown individuals. This study assesses whether maximum intensity projection (MIP) images from thoracic computed tomography (CT) examinations are suitable for automated CV-based personal identification.
The study analyzed 12,465 native CT examinations of the thorax from 8177 individuals, focusing on MIP images to assess their potential for CV-based personal identification in 300 cases. CV automatically identifies and describes features in images, which are then matched to reference images. The number of matching points was used as an indicator of identification accuracy.
The identification rate was 98.67% (296/300) at rank 1 and 99.67% (299/300) at rank 10, among over 8177 potential identities. Matching points were higher for images of the same individual (7.43 ± 5.83%) compared to different individuals (0.16 ± 0.14%), with 100% representing the maximum possible matching points. Reliable matching points were mainly found in the thoracic skeleton, sternum, and spine. Challenges arose when the patient was curved on the table or when medical equipment was present in the image.
Unambiguous identification based on MIP images from thoracic CT examinations is highly reliable, even for large CV databases. This method is applicable to various 2D reconstructions, provided anatomical structures are comparably represented. Radiology offers extensive reference images for CV databases, enhancing automated personal identification in emergencies.
Question Computer vision-based personal identification holds great potential, but it remains unclear whether maximum intensity projection images from thoracic-CT scans are suitable for this purpose. Findings Maximum intensity projection images of the thorax are highly individual, with computer vision-based identification achieving nearly 100% rank-1 accuracy across a potential 8177 identities. Clinical relevance Radiology holds a vast collection of reference images for a computer vision database, enabling automated personal identification in emergency examinations. This improves patient care and communication with relatives by providing access to medical history.
计算机视觉(CV)模仿人类视觉,能够将近期检查的放射影像与庞大的影像数据库进行自动比对以实现身份识别。该方法在涉及身份不明个体的紧急情况下具有巨大潜力。本研究评估胸部计算机断层扫描(CT)检查的最大密度投影(MIP)图像是否适用于基于CV的自动身份识别。
该研究分析了来自8177名个体的12465例胸部CT原始检查,重点关注MIP图像以评估其在300例病例中基于CV进行身份识别的潜力。CV自动识别并描述图像中的特征,然后将这些特征与参考图像进行匹配。匹配点的数量用作识别准确性的指标。
在超过8177个潜在身份中,一级识别率为98.(296/300),前十级识别率为99.67%(299/300)。同一个体的图像匹配点(7.43±5.83%)高于不同个体的图像匹配点(0.16±0.14%),100%代表最大可能的匹配点。可靠的匹配点主要位于胸部骨骼、胸骨和脊柱。当患者在检查台上身体弯曲或图像中有医疗设备时会出现挑战。
基于胸部CT检查的MIP图像进行明确身份识别高度可靠,即使对于大型CV数据库也是如此。该方法适用于各种二维重建,前提是解剖结构具有可比的呈现。放射学为CV数据库提供了大量参考图像,增强了紧急情况下的自动身份识别。
问题基于计算机视觉的身份识别潜力巨大,但胸部CT扫描的最大密度投影图像是否适用于此目的尚不清楚。发现胸部的最大密度投影图像具有高度个体性,基于计算机视觉的识别在潜在的8177个身份中实现了近100%的一级准确性。临床意义放射学为计算机视觉数据库提供了大量参考图像,能够在紧急检查中实现自动身份识别。这通过提供病史访问改善了患者护理以及与亲属的沟通。